4.7 Article

Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures

期刊

JOURNAL OF FLUID MECHANICS
卷 760, 期 -, 页码 567-590

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.606

关键词

particle/fluid flows; suspensions

资金

  1. British Columbia Oil and Gas Commission
  2. NSERC

向作者/读者索取更多资源

The goal of this study is to analyse the steady flow of a Newtonian fluid mixed with spherical particles in a channel for the purpose of modelling proppant transport with gravitational settling in hydraulic fractures. The developments are based on a continuum constitutive model for a slurry, which is approximated by an empirical formula. It is shown that the problem under consideration features a two-dimensional flow and a boundary layer, which effectively introduces slip at the boundary and allows us to describe a transition from Poiseuille flow to Darcy's law for high proppant concentrations. The expressions for both the outer (i.e. outside the boundary layer) and inner (i.e. within the boundary layer) solutions are obtained in terms of the particle concentration, particle velocity and fluid velocity. Unfortunately, these solutions require the numerical solution of an integral equation, and, as a result, the development of a proppant transport model for hydraulic fracturing based on these results is not practicable. To reduce the complexity of the problem, an approximate solution is introduced. To validate the use of this approximation, the error is estimated for different regimes of flow. The approximate solution is then used to calculate the expressions for the slurry flux and the proppant flux, which are the basis for a model that can be used to account for proppant transport with gravitational settling in a fully coupled hydraulic fracturing simulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据