4.7 Article

Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces

期刊

JOURNAL OF FLUID MECHANICS
卷 704, 期 -, 页码 137-172

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2012.224

关键词

transition to turbulence; turbulent flows

资金

  1. Swedish Research Council [621-2010-4147]

向作者/读者索取更多资源

Direct numerical simulations of subcritical rotating, stratified and magnetohydrodynamic wall-bounded flows are performed in large computational domains, focusing on parameters where laminar and turbulent flow can stably coexist. In most cases, a regime of large-scale oblique laminar-turbulent patterns is identified at the onset of transition, as in the case of pure shear flows. The current study indicates that this oblique regime can be shifted up to large values of the Reynolds number R e by increasing the damping by the Coriolis, buoyancy or Lorentz force. We show evidence for this phenomenon in three distinct flow cases: plane Couette flow with spanwise cyclonic rotation, plane magnetohydrodynamic channel flow with a spanwise or wall-normal magnetic field, and open channel flow under stable stratification. Near-wall turbulence structures inside the turbulent patterns are invariably found to scale in terms of viscous wall units as in the fully turbulent case, while the patterns themselves remain large-scale with a trend towards shorter wavelength for increasing Re. Two distinct regimes are identified: at low Reynolds numbers the patterns extend from one wall to the other, while at large Reynolds number they are confined to the near-wall regions and the patterns on both channel sides are uncorrelated, the core of the flow being highly turbulent without any dominant large-scale structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据