4.7 Article

Development of a nonlinear eddy-viscosity closure for the triple-decomposition stability analysis of a turbulent channel

期刊

JOURNAL OF FLUID MECHANICS
卷 664, 期 -, 页码 74-107

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010003617

关键词

boundary layer stability; instability; turbulent boundary layers

资金

  1. Egide group

向作者/读者索取更多资源

The analysis of the instabilities in an unsteady turbulent flow is undertaken using a triple decomposition to distinguish between the time-averaged field, a coherent wave and the remaining turbulent scales of motion. The stability properties of the coherent scale are of interest. Previous studies have relied on prescribed constants to close the equations governing the evolution of the coherent wave. Here we propose an approach where the model constants are determined only from the statistical measures of the unperturbed velocity field. Specifically, a nonlinear eddy-viscosity model is used to close the equations, and is a generalisation of earlier linear eddy-viscosity closures. Unlike previous models the proposed approach does not assume the same dissipation rate for the time-and phase-averaged fields. The proposed approach is applied to a previously published turbulent channel flow, which was harmonically perturbed by two vibrating ribbons located near the channel walls. The response of the flow was recorded at several downstream stations by phase averaging the probe measurements at the same frequency as the forcing. The experimentally measured growth rates and velocity profiles, are compared to the eigenvalues and eigenvectors resulting from the stability analysis undertaken herein. The modes recovered from the solution of the eigenvalue problem, using the nonlinear eddy-viscosity model, are shown to capture the experimentally measured spatial decay rates and mode shapes of the coherent scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据