4.7 Article

Turbulence structure in a boundary layer with two-dimensional roughness

期刊

JOURNAL OF FLUID MECHANICS
卷 635, 期 -, 页码 75-101

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112009007617

关键词

-

向作者/读者索取更多资源

Turbulence measurements for a zero pressure gradient boundary layer over a two-dimensional roughness are presented and compared to previous results for a smooth wall and a three-dimensional roughness (Volino, Schultz & Flack, J. Fluid Mech., vol. 592, 2007, p. 263). The present experiments were made on transverse square bars in the fully rough flow regime. The turbulence structure was documented through the fluctuating velocity components, two-point correlations of the fluctuating velocity and swirl strength and linear stochastic estimation conditioned on the swirl and Reynolds shear stress. The two-dimensional bars lead to significant changes in the turbulence in the outer flow. Reynolds stresses, particularly (v'2) over bar (+) and -(u'v') over bar (+) increase, although the mean flow is not as significantly affected. Large-scale turbulent motions originating at the wall lead to increased spatial scales in the Outer flow. The dominant feature of the outer flow, however, remains hairpin vortex packets which have similar inclination angles for all wall conditions. The differences between boundary layers over two-dimensional and three-dimensional roughness are attributable to the scales of the motion induced by each type of roughness. This study has shown three-dimensional roughness produces turbulence scales of the order of the roughness height k while the motions generated by two-dimensional roughness may be much larger due to the width of the roughness elements. It is also noted that there are fundamental differences in the response of internal and external flows to strong wall perturbations, with internal flows being less sensitive to roughness effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据