4.3 Article

The Role of the Pax1/9 Gene in the Early Development of Amphioxus Pharyngeal Gill Slits

出版社

WILEY-BLACKWELL
DOI: 10.1002/jez.b.22596

关键词

-

资金

  1. National Natural Science Foundation of China [31101631, 31071110]
  2. Natural Science Foundation of Fujian Province of China [2011J05097]
  3. Scientific and Technical Innovation Committee of Shenzhen, China [CXZZ20120614164555920]

向作者/读者索取更多资源

The pharynx is a major characteristic of chordates. Compared with vertebrates, amphioxus has an advantage for the study of pharynx development, as embryos lack neural crest, and the pharynx is mainly derived from endoderm cells. The Pax1/9 subfamily genes have essential roles in vertebrate pharyngeal patterning, but it is not known if the Pax1/9 gene has similar functions in amphioxus pharynx development. To answer this question, we examined the Pax1/9 gene expression pattern in amphioxus embryos at different developmental stages, and observed morphological changes following Pax1/9 knockdown. RT-qPCR analysis indicated that Pax1/9 expression was initiated during early neurula stage and rapidly peaked during mid-neurula stage. Furthermore, in situ hybridization analysis showed that Pax1/9 transcripts were localized exclusively in the most endodermal region of the developing pharynx in early neurula stage embryos; however, Pax1/9 expression was strikingly down-regulated in the region where gill slits would form from the fusion of endoderm and ectoderm in subsequent developmental stages and was maintained in the border regions between adjacent gill slits. Knockdown of Pax1/9 function using both morpholino and siRNA approaches led to embryonic defects in the first three gill slits, and fusion of the first two gill slits. Moreover, the expression levels of the pharyngeal marker genes Six1/2 and Tbx1/10 were reduced in Pax1/9 knockdown embryos. From these observations, we concluded that the Pax1/9 gene has an important role in the initial differentiation of amphioxus pharyngeal endoderm and in the formation of gill slits, most likely via modulation of Six1/2 and Tbx1/10 expression. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 30-40, 2015. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据