4.7 Article

Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 62, 期 8, 页码 2745-2761

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erq447

关键词

Chinese wild Vitis; gene expression; promoter activity; resveratrol; stilbene synthase

资金

  1. National Natural Science Foundation of China [30971972]

向作者/读者索取更多资源

The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据