4.8 Article

The matricellular protein CCN1 suppresses hepato-carcinogenesis by inhibiting compensatory proliferation

期刊

ONCOGENE
卷 35, 期 10, 页码 1314-1323

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2015.190

关键词

-

资金

  1. NIH [R01GM78492]

向作者/读者索取更多资源

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and is on the rise in the United States. Previous studies showed that the matricellular protein CCN1 (CYR61) is induced during hepatic injuries and functions to restrict and resolve liver fibrosis. Here, we show that CCN1 suppresses hepatocarcinogenesis by inhibiting carcinogen-induced compensatory hepatocyte proliferation, thus limiting the expansion of damaged and potentially oncogenic hepatocytes. Consistent with tumor suppression, CCN1 expression is downregulated in human HCC. Ccn1(Delta Hep) mice with hepatocyte-specific deletion of Ccn1 suffer increased HCC tumor multiplicity induced by the hepatocarcinogen diethylnitrosamine (DEN). Knockin mice (Ccn1(dm/dm)) that express an integrin alpha(6)beta(1)-binding defective CCN1 phenocopied Ccn1(Delta Hep) mice, indicating that CCN1 acts through its alpha(6)beta(1) binding sites in this context. CCN1 effectively inhibits epidermal growth factor receptor (EGFR)-dependent hepatocyte proliferation through integrin alpha(6)-mediated accumulation of reactive oxygen species (ROS), thereby triggering p53 activation and cell cycle block. Consequently, Ccn1(dm/dm) mice exhibit diminished p53 activation and elevated compensatory hepatocyte proliferation, resulting in increased HCC. Furthermore, we show that a single dose of the EGFR inhibitor erlotinib delivered prior to DEN-induced injury was sufficient to block compensatory proliferation and annihilate development of HCC nodules observed 8 months later, suggesting potential chemoprevention by targeting CCN1-inhibitable EGFR-dependent hepatocyte proliferation. Together, these results show that CCN1 is an injury response protein that functions not only to restrict fibrosis in the liver, but also to suppress hepatocarcinogenesis by inhibiting EGFR-dependent hepatocyte compensatory proliferation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据