4.7 Article

An enhanced stiffness model for elastic lines and its application to the analysis of a moored floating offshore wind turbine

期刊

OCEAN ENGINEERING
卷 109, 期 -, 页码 444-453

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2015.09.002

关键词

Large extension; Elastic rod theory; Finite element method; Mooring system; Motion response; Dynamic response

资金

  1. Department of Naval Architecture, Ocean and Marine Engineering at the University of Strathclyde
  2. Faculty of Engineering at the University of Strathclyde
  3. China Scholarship Council (CSC) [2011606021]

向作者/读者索取更多资源

The performance of a polyester mooring line is non-linear and its elongation plays a significant role in the dynamic response of an offshore moored structure. However, unlike chain, the tension-elongation relationship and the overall behavior of elastic polyester ropes are complex. In this paper, by applying an enhanced stiffness model of the mooring line, the traditional elastic rod theory has been extended to allow for large elongations. One beneficial feature of the present method is that the tangent stiffness matrix is symmetric; in non-linear formulations the tangent stiffness matrix is often non-symmetric. The static problem was solved by Newton-Raphson iteration, whereas a direct integration method was used for the dynamic problem. The computed mooring line tension was validated against the proprietary OrcaFlex software. Results of mooring line top tension predicated by different elongations are compared and discussed. The present method was then used for a simulation of an offshore floating wind turbine moored with taut lines. From a comparison between linear and non-linear formulations, it is seen that a linear spring model under-estimates the mean position when the turbine is operating, but over-estimates the amplitude of the platform response at low frequencies when the turbine has shut down. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据