4.6 Article

Synthesis of Cu-Ce/KIT-6 materials for SOx removal

期刊

APPLIED CATALYSIS A-GENERAL
卷 504, 期 -, 页码 110-118

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2014.11.024

关键词

Mesoporous adsorbent; SOx abatement; Copper oxide; CeO2; Synergistic effect

资金

  1. French Agency for Environment and Energy Management (ADEME) through program CORTEA [1281C0039]

向作者/读者索取更多资源

In this paper, mesoporous silica based adsorbents were synthesized and evaluated for the desulfurization of flue gas streams. KIT-6 mesoporous silica was impregnated with CuO, CeO2 and CuO-CeO2. The materials were characterized by XRD, N-2 adsorption-desorption, SEM, TEM and XPS analysis. The activity of the obtained adsorbents was evaluated at 400 degrees C with a GHSV (Gas Hourly Space Velocity) of 25,000 h(-1) for the removal of SOx from gas streams. The results show that the co-impregnation of copper and cerium on KIT-6 results in a synergistic effect in terms of SO2 removal. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Synthesis of CuO/SBA-15 adsorbents for SOx removal applications, using different impregnation methods

Pierrick Gaudin, Sophie Dorge, Habiba Nouali, Joel Patarin, Jean-Francois Brilhac, Emmanuel Fiani, Matthieu Vierling, Michel Moliere

COMPTES RENDUS CHIMIE (2015)

Article Chemistry, Applied

Investigation of grape marc combustion using thermogravimetric analysis. Kinetic modeling using an extended independent parallel reaction (EIPR)

Maximilien Valente, Alain Brillard, Cornelius Schoennenbeck, Jean-Francois Brilhac

FUEL PROCESSING TECHNOLOGY (2015)

Article Thermodynamics

Investigation of thermal degradation of different wood-based biofuels of the northwest region of the Russian Federation

Pavel Maryandyshev, Aleksandr Chernov, Victor Lyubov, Gwenaelle Trouve, Alain Brillard, Jean-Francois Brilhac

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2015)

Article Chemistry, Physical

Modelling of Carbon Black oxidation in the presence of CeO2 catalyst using a 3D representation of the solid-solid mixture

May Issa, Alain Brillard, Valerie Tschamber, Jean-Francois Brilhac

APPLIED CATALYSIS B-ENVIRONMENTAL (2016)

Article Chemistry, Physical

CuO/SBA-15 materials synthesized by solid state grinding: Influence of CuO dispersion and multicycle operation on DeSOx performances

Pierrick Gaudin, Sophie Dorge, Habiba Nouali, Matthieu Vierling, Emmanuel Fiani, Michel Moliere, Jean-Francois Brilhac, Joel Patarin

APPLIED CATALYSIS B-ENVIRONMENTAL (2016)

Article Thermodynamics

Fast pyrolysis of coals under N2 and CO2 atmospheres Experiments and modeling

Sami Zellagui, Cornelius Schonnenbeck, Nabila Zouaoui, Jean-Francois Brilhac, Olivier Authier, Emmanuel Thunin, Lynda Porcheron

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2018)

Article Chemistry, Physical

Ruthenium and platinum catalyzed carbon oxidation: A comparative kinetic study

M. Jeguirim, K. Villani, J. F. Brilhac, J. A. Martens

APPLIED CATALYSIS B-ENVIRONMENTAL (2010)

Article Chemistry, Physical

Modeling of NOx adsorption-desorption-reduction cycles on a ruthenium loaded Na-Y zeolite

M. Labaki, M. Issa, S. Smeekens, S. Heylen, C. E. A. Kirschhock, K. Villani, M. Jeguirim, D. Habermacher, J. F. Brilhac, J. A. Martens

APPLIED CATALYSIS B-ENVIRONMENTAL (2010)

Article Thermodynamics

Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire

Kamel Guedri, Mohamed Naceur Borjini, Mejdi Jeguirim, Jean-Francois Brilhac, Rachid Said

ENERGY (2011)

Article Energy & Fuels

Kinetic study of pulverized coal devolatilization for boiler CFD modeling

Olivier Authier, Emmanuel Thunin, Pierre Plion, Cornelius Schoennenbeck, Gontrand Leyssens, Jean-Francois Brilhac, Lynda Porcheron

Article Thermodynamics

Study of experimental and theoretical procedures when using thermogravimetric analysis to determine kinetic parameters of carbon black oxidation

N. Zouaoui, J. F. Brilhac, F. Mechati, M. Jeguirim, B. Djellouli, P. Gilot

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2010)

Article Thermodynamics

Experimental study of a confined premixed metal combustor: Metal flame stabilization dynamics and nitrogen oxides production

Driss Laraqui, Olivier Allgaier, Cornelius Schonnenbeck, Gontrand Leyssens, Jean-Francois Brilhac, Ricardo Lomba, Clement Dumand, Olivier Guezet

PROCEEDINGS OF THE COMBUSTION INSTITUTE (2019)

Article Energy & Fuels

Analysis of the combustion of pellets made with three Cameroonian biomass in a domestic pellet stove

Theophile Vitoussia, Gontrand Leyssens, Gwenaelle Trouve, Alain Brillard, Alexis Kemajou, Ebenezer Njeugna, Jean-Francois Brilhac

Article Chemistry, Physical

Metal fuel production through the solar carbothermal reduction of magnesia: effect of the reducing agent

Youssef Berro, Damaris Kehrli, Jean-Francois Brilhac, Marianne Balat-Pichelin

Summary: The production of metallic powders using a Sol@rmet reactor at low pressure and with concentrated solar power was studied, with a focus on the effects of charcoal reducing agents and bentonite binder on metallic conversion. Experimental results showed the catalytic-like role of the bentonite binder in achieving high Mg yield and purity.

SUSTAINABLE ENERGY & FUELS (2021)

Article Chemistry, Physical

Enhancing oxygen reduction reaction with Pt-decorated Cu@Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement

Ming-Yi Chen, Ngoc Thanh Thuy Tran, Ahmed Abubakar Alao, Wen-Dung Hsu

Summary: This study demonstrates the significance of surface Pt atom arrangement for the efficiency of ORR in PEMFCs and reveals the correlation between Pt-Pt average distance and O2 dissociation barrier. Furthermore, the study discovers a robust correlation between the level of the catalyst's d-band center and O2 adsorption energy. High-entropy alloy substrates provide potential for controlling Pt arrangement and O2 dissociation barrier.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers

Eduardo C. Atayde Jr, Babasaheb M. Matsagar, Yu-Cheng Wang, Kevin C. -W. Wu

Summary: This study presents the first application of an acidic MOF, Sulfated MOF-808, in catalyzing the HAA reactions of furan oligomers for the production of biofuel precursors. The catalyst showed high yield, selectivity, and recyclability, making it versatile for different starting materials.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts

Maria do Carmo Rangel, Francieli Martins Mayer, Soraia Jesus de Oliveira, Sergio Gustavo Marchetti, Fabricio Luiz Faita, Doris Ruiz, Giovanni Saboia, Mariana Kieling Dagostini, Jonder Morais, Maria do Carmo Martins Alves

Summary: This study developed a new catalyst by investigating the effect of magnesium on the catalytic properties of hematite in ethylbenzene dehydrogenation. The catalyst showed important differences in activity, selectivity, and stability, making it a promising candidate for commercial applications.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective oxidation of methacrolein to methacrylic acid over CsH3PMo11VO40 with structural defects

Yanjun Li, Qian Wang, Hui Tian, Mingyuan Zhu, Yuanyuan Liu

Summary: A novel strategy using microwave-assisted precipitation was proposed to prepare defective CsH3PMo11VO40 catalyst for the oxidation of methacrolein to methacrylic acid. Microwave treatment accelerates crystallization, increases vanadyl species content, and forms defective Keggin structures, thereby enhancing the oxidation capacity of the catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives

Rajeshwari Athavale, Sailee Gardi, Fatima Choudhary, Dayanand Patil, Nandkishor Chandan, Paresh More

Summary: In this study, a novel acidic ionic liquid catalyst was prepared and used for the synthesis of bis-indolyl methane derivatives. The catalyst exhibited short reaction times, easy purification, and reusability.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

The chemical state and Cu plus stability for three-way catalytic performance of Cu-added Al2O3 catalysts

Masatomo Hattori, Takato Hattori, Masakuni Ozawa

Summary: Cu-added gamma-Al2O3 catalysts were prepared with varying Cu loadings and the effects of copper oxidation states on catalytic activity were investigated. The results showed that the addition of copper increased the catalyst activity, but excessive copper loading decreased catalytic activity. XRD and TEM analysis indicated the formation of a solid solution of copper oxide species on the surface of gamma-Al2O3. XAS and TPR data demonstrated variations in copper oxidation states among the catalysts.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Enhanced oxygen reduction catalytic performance of PtNi alloy through modulating metal-support interaction

Liwei Fang, Shiyang Niu, Shengsen Wang, Yiqing Lu, Yuanhui Cheng

Summary: In this study, PtNi alloy on nitrogen-doped carbon and SnO2 dual-support was designed to modulate the metal-support interaction, resulting in improved catalytic activity and stability for oxygen reduction reaction. The SnO2/PtNi/NC catalyst exhibited a strongly coupled interface, enhanced electron transfer, and higher half-wave potential compared to PtNi/NC and commercial Pt/C.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrOX/H-MFI composite catalyst with long-term stability

Shohei Harada, Duanxing Li, Kenta Iyoki, Masaru Ogura

Summary: This study investigates the catalytic performance of a composite catalyst composed of ZnZrOX and H-zeolite for the hydrogenation of CO2. The deactivation of the composite catalyst is influenced by ion exchange of Zn2+ and/or coke, with their effects differing based on the zeolite structure. Separating the grains of the composite catalyst can prevent deactivation.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts

Laura Proano, Christopher W. Jones

Summary: In this study, NiGa alloy particles supported on CeO2, ZrO2, and ZrO2-CeO2 solid solutions were prepared and characterized. The nature of the support was found to have a significant influence on the catalyst's activity and selectivity, with the crystalline structure of ZrO2 having the greatest impact. Pure ZrO2 showed the highest methanol selectivity and CO2 conversion at high Zr:Ce ratios. In equimolar and Ce-rich conditions, basic sites and oxygen vacancies were found to be the key parameters affecting methanol production.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Reductive amination of 1,6-hexanediol with a modified Ru/Al2O3 catalyst

Liyan Zhang, Yinze Yang, Leilei Zhou, Fengyu Zhao, Haiyang Cheng

Summary: 1,6-Hexamethylenediamine was successfully synthesized via the reductive amination of 1,6-hexanediol using a Ru/PRL(x)-Al2O3 catalyst. The highly dispersed and anchored Ru species, formed by 1,10-phenanthroline (PRL), played a crucial role in the catalytic reaction. The formation of new acid-base pairs, electron deficient Ru species, and smaller nanoparticles contributed to the improved catalytic performances of the Ru/PRL-Al2O3 catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Longevity increase of an impregnated Ni/CeO2-Al2O3 dry reforming catalyst by indium

Anita Horvath, Miklos Nemeth, Andrea Beck, Gyorgy Safran, Valeria La Parola, Leonarda Francesca Liotta, Gregor Zerjav, Matevz Roskaric, Albin Pintar

Summary: This study investigates the catalytic and structural changes caused by the addition of 0.25 wt% indium in a 3% Ni/CeO2-Al2O3 catalyst prepared by impregnation method. The results show that the addition of indium can decrease the activity of the catalyst, but it improves its stability and reduces coking.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst

Ankush Kularkar, Vaibhav Vilas Khedekar, Sachin D. Chaudhari, Mudavath Ravi, Sadhana S. Rayalu, Penumaka Nagababu

Summary: Efficiently addressing the challenges of photocatalytic CO2 reduction to CH3OH is crucial. This study developed Zn-BTC MOF and its composites with CaIn2S4, achieving highly efficient and robust photocatalytic CO2 reduction to CH3OH under ambient conditions, using H2O2 as the hydrogen source. Among the composites, ZMCIS4 demonstrated excellent performance with a CH3OH evolution of 49100 μmol/g.cat and a quantum efficiency of approximately 78.41%. The enhanced performance was attributed to the production of nascent hydrogen atoms (H center dot) through the photo-splitting of H2O2 on the ZMCIS surface.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Numerous active sites in self-supporting Co3O4 nanobelt array for boosted and stabilized 5-hydroxymethylfurfural electro-oxidation

Dan Liu, Yudong Li, Chengyu Wang, Haiyue Yang, Rong Wang, Shujun Li, Xiaohui Yang

Summary: In this study, a self-supporting three-dimensional porous Co3O4 nanobelt array decorated on nickel foam (P-Co3O4 -NBA@NF) electrode with numerous active sites was successfully constructed for the oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA). The P-Co3O4 -NBA@NF electrode demonstrated high conversion efficiency, selectivity, and Faraday efficiency, as well as remarkable long-term stability. This research provides a promising electrocatalyst for biomass conversion.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene

Yimin Li, Enggah Kurniawan, Fumiya Sato, Takayoshi Hara, Yasuhiro Yamada, Satoshi Sato

Summary: In this study, several silica-alumina catalysts modified with Ag were examined for the dehydration of 1,3-butanediol to 1,3-butadiene. Among them, an amorphous silica-alumina catalyst (SAL-3) modified with Ag showed the highest improvement in catalytic activity and stability when operated in H2 flow. The generation of reversible acid sites was found to be the reason behind the enhanced activity and stability of this Ag/SAL-3 catalyst. The effects of various parameters on the catalytic activity of Ag/SAL-3, such as reaction temperature, contact time, Ag content, and carrier gas, were investigated.

APPLIED CATALYSIS A-GENERAL (2024)