4.2 Article Proceedings Paper

Microstructural changes in a cementitious membrane due to the application of a DC electric field

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10934520801974632

关键词

cement microstructure; electromigration techniques; electrochemical impedance spectroscopy; mercury intrusion porosimetry

向作者/读者索取更多资源

The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据