4.3 Article

Mission Performance Simulation of Integrated Helicopter-Engine Systems Using an Aeroelastic Rotor Model

出版社

ASME
DOI: 10.1115/1.4024869

关键词

-

向作者/读者索取更多资源

This paper presents an integrated approach, targeting the comprehensive assessment of combined helicopter engine designs within designated operations. The developed methodology comprises a series of individual modeling theories, each applicable to a different aspect of helicopter flight dynamics and performance. These relate to rotor blade modal analysis, three-dimensional flight path definition, flight dynamics trim solution, aeroelasticity, and engine performance. The individual mathematical models are elaborately integrated within a numerical procedure, solving for the total mission fuel consumption. The overall simulation framework is applied to the performance analysis of the Aerospatiale SA330 helicopter within two generic, twin-engine medium helicopter missions. An extensive comparison with flight test data on main rotor trim controls, power requirements, and unsteady blade structural loads is presented. It is shown that, for the typical range of operating conditions encountered by modern twin-engine medium civil helicopters, the effect of operational altitude on fuel consumption is predominantly influenced by the corresponding effects induced on the engine rather than on airframe rotor performance. The implications associated with the implicit coupling between aircraft and engine performance are discussed in the context of mission analysis. The potential to comprehensively evaluate integrated helicopter engine systems within complete three-dimensional operations using modeling fidelity designated for main rotor design applications is demonstrated. The proposed method essentially constitutes an enabler in terms of focusing the rotorcraft design process on designated operation types rather than on specific sets of flight conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据