4.5 Article

NOD2 receptors in adenopituitary folliculostellate cells: expression and function

期刊

JOURNAL OF ENDOCRINOLOGY
卷 203, 期 1, 页码 111-122

出版社

BIOSCIENTIFICA LTD
DOI: 10.1677/JOE-09-0113

关键词

-

资金

  1. German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) [ON 79/1-1]

向作者/读者索取更多资源

Folliculostellate cells (FS cells) are non-endocrine cells from the pituitary gland that respond to bacterial endotoxins by producing cytokines. In immune cells, an important component of bacterial recognition are the toll-like receptors (TLRs). Previously, we showed that FS cells express TLR4. The TLR4 ligand lipopolysaccharide (LPS) stimulates interleukin-6 (IL6) production through nuclear factor kappa B (NFKB) induction. Binding of IL6 to gp130 receptor activates signal transducer and activator of transcription 3 (STAT3), an important mediator of inflammatory response. Another family involved in innate immune response following bacterial infection is the nucleotide-binding oligomerisation domain (NOD) intracellular receptor fancily. Herein, we describe for the first time the expression and function of NOD receptors in human pituitary and FS TtT/GF cell line. The NOD2 agonist muramyl dipeptide (MDP) increased Nfkb1-transcriptional activity, -protein expression and IL6 secretion in TtT/GF cells. Furthermore, these effects were potentiated by the combination of MIDI) and LPS. Silencing NOD2 abolished the action of LPS on NFKB transcriptional activity and IL6 production, indicating that, in TtT/GF cells, TLR4 transducer its signal through NOD2 receptor. We show here that in TtT/GF cells, Nod2 overexpression or stimulation by MDP increased STAT3 transcriptional activity. Furthermore, silencing STAT3 inhibited basal, LPS and MDP stimulated NFKB protein expression and overexpression of protein inhibitor of activated STAT3 (Pias3) markedly decreased basal NFKB activity. These data suggest that in TtT/GF cells, STAT3 acting upstream to NFKB mediates NOD2 receptor signalling pathway. In conclusion, the present study demonstrates that NOD molecules play a modulatory role in the pituitary by regulating the function and activation of FS cells in response to bacterial components. Journal of Endocrinology (2009) 203, 111-122

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据