4.5 Article

Impact of thermal cycling on Sn-Ag-Cu solder joints and board-level drop reliability

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 37, 期 6, 页码 880-886

出版社

SPRINGER
DOI: 10.1007/s11664-008-0400-0

关键词

drop impact; thermal cycling; intermetallic compound; Kirkendall void; Pb-free solder; ball grid array

向作者/读者索取更多资源

The electronic packaging industry uses electroless nickel immersion gold (ENIG) or Cu-organic solderability preservative (Cu-OSP) as a bonding pad surface finish for solder joints. In portable electronic products, drop impact tests induce solder joint failures via the interfacial intermetallic, which is a serious reliability concern. The intermetallic compound (IMC) is subjected to thermal cycling, which negatively affects the drop impact reliability. In this work, the reliability of lead-free Sn-3.0Ag-0.5Cu (SAC) soldered fine-pitch ball grid array assemblies were investigated after being subjected to a combination of thermal cycling followed by board level drop tests. Drop impact tests conducted before and after thermal aging cycles (500, 1000, and 1500 thermal cycles) show a transition of failure modes and a significant reduction in drop durability for both SAC/ENIG and SAC/Cu-OSP soldered assemblies. Without thermal cycling aging, the boards with the Cu-OSP surface finish exhibit better drop impact reliability than those with ENIG. However, the reverse is true if thermal cycle (TC) aging is performed. For SAC/Cu-OSP soldered assemblies, a large number of Kirkendall voids were observed at the interface between the intermetallic and Cu pad after thermal cycling aging. The void formation resulted in weak bonding between the solder and Cu, leading to brittle interface fracture in the drop impact test, which resulted in significantly lower drop test lifetimes. For SAC/ENIG soldered assemblies, the consumption of Ni in the formation of NiCuSn intermetallics induced vertical voids in the Ni(P) layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据