4.7 Article

Barrier Formation: Potential Molecular Mechanism of Enamel Fluorosis

期刊

JOURNAL OF DENTAL RESEARCH
卷 93, 期 1, 页码 96-102

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034513510944

关键词

pH regulation; Slc4a2; chloride; quantitative X-ray microanalysis; hypermineralization; hypomineralization

资金

  1. National Institutes of Health [DE13508]
  2. NATIONAL INSTITUTE OF DENTAL & CRANIOFACIAL RESEARCH [R01DE013508] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE OF DENTAL &CRANIOFACIAL RESEARCH [R56DE013508] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl- for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b(-/-) mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b(-/-) mice and was strongly correlated with Cl-. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl- levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据