4.7 Article

Polypeptide-catalyzed Biosilicification of Dentin Surfaces

期刊

JOURNAL OF DENTAL RESEARCH
卷 88, 期 4, 页码 377-381

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034509333838

关键词

silica; morphology; dentin; tubules; permeability

资金

  1. Ivoclar Vivadent AG
  2. University of Connecticut Health Center

向作者/读者索取更多资源

In situ formation of mineral particles by biocatalysis would be advantageous for occluding dentin tubules to reduce permeability or for sealing of material-tooth interfaces. One approach would require that the peptide-catalyst remain functional on the dentin surface. Based on recent observations of retained activity on other surfaces, we hypothesized that poly(L-lysine) (PLL), an analog of the protein catalyst responsible for silica formation in primitive marine species, would remain functional on dentin. PLL was applied to dentin discs along with a pre-hydrolyzed silica precursor, tetramethyl orthosilicate (TMOS). Discs were analyzed microscopically (scanning electron microscopy, SEM) and chemically (x-ray photoelectron spectroscopy, XPS). The treated discs, but not the negative controls, exhibited partial distinct coating whose XPS survey was consistent with that of silica, demonstrating that the polypeptide was required and retained its mediating activity. Peptide-catalysts that mediate mineral formation can retain functionality on dentin, suggesting a wide range of preventive and treatment strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据