4.5 Article

Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

期刊

NUCLEAR FUSION
卷 55, 期 9, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0029-5515/55/9/093005

关键词

plasma control; advanced scenario control; model-based control; safety factor profile control

资金

  1. US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-SC0001334, DE-SC0010661, DE-AC05-00OR23100, DE-FC02-04ER54698, DE-FG02-04ER54761]

向作者/读者索取更多资源

DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple preprogrammed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (beta(N)) dynamics is first embedded into a numerical optimization algorithm to design feedforward actuator trajectories that steer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and beta(N). Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Second, a feedback algorithm for q profile control is designed following an FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when beta(N) is relatively close to the target, indicating the need for integrated q profile and beta(N) control to further enhance the ability to achieve robust scenario execution. The ability of an integrated q profile + beta(N) feedback controller to track a desired target is demonstrated through simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nuclear Science & Technology

New capabilities and upgrade path for the DIII-D neutral beam heating system

J. T. Scoville, M. D. Boyer, B. J. Crowley, N. W. Eidietis, C. J. Pawley, J. M. Rauch

FUSION ENGINEERING AND DESIGN (2019)

Article Physics, Fluids & Plasmas

Real-time capable modeling of neutral beam injection on NSTX-U using neural networks

M. D. Boyer, S. Kaye, K. Erickson

NUCLEAR FUSION (2019)

Article Nuclear Science & Technology

Improved fast vertical control in KSTAR

D. Mueller, S. H. Hahn, N. Eidietis, J. G. Bak, M. D. Boyer, D. A. Humphreys, A. W. Hyatt, Y. M. Jeon, H. S. Kim, M. Walker

FUSION ENGINEERING AND DESIGN (2019)

Article Physics, Fluids & Plasmas

Feedback control of stored energy and rotation with variable beam energy and perveance on DIII-D

M. D. Boyer, K. G. Erickson, B. A. Grierson, D. C. Pace, J. T. Scoville, J. Rauch, B. J. Crowley, J. R. Ferron, S. R. Haskey, D. A. Humphreys, R. Johnson, R. Nazikian, C. Pawley

NUCLEAR FUSION (2019)

Article Physics, Fluids & Plasmas

Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST

K. J. Montes, C. Rea, R. S. Granetz, R. A. Tinguely, N. Eidietis, O. M. Meneghini, D. L. Chen, B. Shen, B. J. Xiao, K. Erickson, M. D. Boyer

NUCLEAR FUSION (2019)

Article Physics, Fluids & Plasmas

Machine learning control for disruption and tearing mode avoidance

Yichen Fu, David Eldon, Keith Erickson, Kornee Kleijwegt, Leonard Lupin-Jimenez, Mark D. Boyer, Nick Eidietis, Nathaniel Barbour, Olivier Izacard, Egemen Kolemen

PHYSICS OF PLASMAS (2020)

Article Nuclear Science & Technology

Advances and challenges in KSTAR plasma control toward long-pulse, high-performance experiments

Sang-hee Hahn, H. Han, M. H. Woo, J. G. Bak, J. Chung, Y. M. Jeon, J. H. Jeong, M. Joung, J. W. Juhn, H. S. Kim, Heungsu Kim, M. W. Lee, G. W. Shin, T. H. Tak, S. W. Yoon, J. Barr, N. W. Eidietis, D. A. Humphreys, A. Hyatt, B. G. Penaflor, D. A. Piglowski, M. L. Walker, A. S. Welander, M. D. Boyer, K. Erickson, D. Mueller

FUSION ENGINEERING AND DESIGN (2020)

Article Physics, Fluids & Plasmas

Model predictive control of KSTAR equilibrium parameters enabled by TRANSP

M. D. Boyer, X. Yuan, J. Ahn, S-H. Hahn, R. Nazikian, F. M. Poli, S. Sabbagh

NUCLEAR FUSION (2020)

Article Nuclear Science & Technology

Advancing Fusion with Machine Learning Research Needs Workshop Report

David Humphreys, A. Kupresanin, M. D. Boyer, J. Canik, C. S. Chang, E. C. Cyr, R. Granetz, J. Hittinger, E. Kolemen, E. Lawrence, V. Pascucci, A. Patra, D. Schissel

JOURNAL OF FUSION ENERGY (2020)

Article Nuclear Science & Technology

Accelerated version of NUBEAM capabilities in DIII-D using neural networks

Shira M. Morosohk, Mark D. Boyer, Eugenio Schuster

Summary: A neural network model has been developed to study the effects of neutral beam injection on DIII-D, using experimental data from the 2018 campaign generated by the NUBEAM module of TRANSP. By reducing dimensionality of profile data using principal component analysis, the model accurately reproduces the results of Monte Carlo code NUBEAM with significantly faster execution time, making it suitable for offline scenario planning and online active control applications that require numerous simulation runs for optimization tasks.

FUSION ENGINEERING AND DESIGN (2021)

Article Physics, Fluids & Plasmas

Identification of multiple eigenmode growth rates towards real time detection in DIII-D and KSTAR tokamak plasmas

T. Liu, Z. R. Wang, M. D. Boyer, S. Munaretto, Z. X. Wang, B. -H. Park, N. C. Logan, S. M. Yang, J. -K. Park

Summary: The successful application of 3D magnetohydrodynamic spectroscopy in tokamak experiments allows for the identification of multi-mode eigenvalues and real-time detection of stability. The new method efficiently uses internal coils to apply 3D fields for active plasma stability detection. Numerical validation has shown that this method is robust and more efficient for real-time monitoring of plasma stability based on stable mode eigenvalues.

NUCLEAR FUSION (2021)

Article Physics, Fluids & Plasmas

Prediction of electron density and pressure profile shapes on NSTX-U using neural networks

M. D. Boyer, J. Chadwick

Summary: A new model developed using neural networks can predict electron density and pressure profile shapes on NSTX and NSTX-U efficiently and accurately, with potential applications in scenario development optimization and real-time plasma control. The model has been trained and tested on measured profiles from experimental discharges during the first operational campaign of NSTX-U.

NUCLEAR FUSION (2021)

Article Physics, Fluids & Plasmas

Toward active disruption avoidance via real-time estimation of the safe operating region and disruption proximity in tokamaks

M. D. Boyer, C. Rea, M. Clement

Summary: This paper presents a real-time capable algorithm for identifying the safe operating region of a tokamak. The algorithm calculates the distance of a point from a disruptive boundary, based on a convex set of linear constraints. It uses an empirical machine learning predictor to calculate the disruptivity of points. The algorithm enables active optimization of the operating point to maintain a safe margin from disruptive boundaries. The proposed algorithm is tested and shown to be effective and real-time capable.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

Development and experimental qualification of novel disruption prevention techniques on DIII-D

J. L. Barr, B. Sammuli, D. A. Humphreys, E. Olofsson, X. D. Du, C. Rea, W. P. Wehner, M. D. Boyer, N. W. Eidietis, R. Granetz, A. Hyatt, T. Liu, N. C. Logan, S. Munaretto, E. Strait, Z. R. Wang, The DIII-D Team

Summary: Novel disruption prevention solutions, including real-time control algorithms, limited topology transitions during emergency shutdown, and emergency shutdown methods, have been developed and tested. These methods have successfully prevented vertical displacement events, improved the disruption risk during emergency shutdown after large tearing and locked modes, and developed a method to excite instabilities to form a warm, helical core post-thermal quench to avoid VDEs and runaway electron generation.

NUCLEAR FUSION (2021)

Article Physics, Fluids & Plasmas

NSTX-U theory, modeling and analysis results

W. Guttenfelder, D. J. Battaglia, E. Belova, N. Bertelli, M. D. Boyer, C. S. Chang, A. Diallo, V. N. Duarte, F. Ebrahimi, E. D. Emdee, N. Ferraro, E. Fredrickson, N. N. Gorelenkov, W. Heidbrink, Z. Ilhan, S. M. Kaye, E-H Kim, A. Kleiner, F. Laggner, M. Lampert, J. B. Lestz, C. Liu, D. Liu, T. Looby, N. Mandell, R. Maingi, J. R. Myra, S. Munaretto, M. Podesta, T. Rafiq, R. Raman, M. Reinke, Y. Ren, J. Ruiz Ruiz, F. Scotti, S. Shiraiwa, V Soukhanovskii, P. Vail, Z. R. Wang, W. Wehner, A. E. White, R. B. White, B. J. Q. Woods, J. Yang, S. J. Zweben, S. Banerjee, R. Barchfeld, R. E. Bell, J. W. Berkery, A. Bhattacharjee, A. Bierwage, G. P. Canal, X. Chen, C. Clauser, N. Crocker, C. Domier, T. Evans, M. Francisquez, K. Gan, S. Gerhardt, R. J. Goldston, T. Gray, A. Hakim, G. Hammett, S. Jardin, R. Kaita, B. Koel, E. Kolemen, S-H Ku, S. Kubota, B. P. LeBlanc, F. Levinton, J. D. Lore, N. Luhmann, R. Lunsford, R. Maqueda, J. E. Menard, J. H. Nichols, M. Ono, J-K Park, F. Poli, T. Rhodes, J. Riquezes, D. Russell, S. A. Sabbagh, E. Schuster, D. R. Smith, D. Stotler, B. Stratton, K. Tritz, W. Wang, B. Wirth

Summary: The mission of NSTX-U is to advance the physics and technical solutions for next-step steady-state tokamak fusion devices. It aims to develop a deeper understanding of high-performance non-inductive plasmas and solve challenges related to plasma exhaust and thermal transport.

NUCLEAR FUSION (2022)

暂无数据