4.8 Article Proceedings Paper

Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N′-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity

期刊

JOURNAL OF CONTROLLED RELEASE
卷 155, 期 2, 页码 296-302

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2011.04.026

关键词

Polyplex micelle; Chondroitin sulfate; Gene delivery; Block catiomer; Membrane toxicity

资金

  1. Grants-in-Aid for Scientific Research [21300177, 23350049] Funding Source: KAKEN

向作者/读者索取更多资源

Nonviral polycation-based gene carriers (polyplexes) have attracted attention as safe and efficient gene delivery systems. Polyplex micelles comprised of poly(ethyleneglycol)-block-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)) and plasmid DNA (pDNA) have shown high transfection efficiency with low toxicity due to the pH-sensitive protonation behavior of PAsp(DET), which enhances endosomal escape, and their self-catalytic degradability under physiological conditions, which reduces cumulative toxicity during transfection. In this study, we improved the safety and transfection efficiency of this polyplex micelle system by adding an anionic polycarbohydrate, chondroitin sulfate (CS). A quantitative assay for cell membrane integrity using image analysis software showed that the addition of CS markedly reduced membrane damage caused by free polycations in the micelle solution. It also reduced tissue damage and subsequent inflammatory responses in the skeletal muscle and lungs of mice following in vivo gene delivery with the polyplex micelles. Subsequently, this led to prolonged transgene expression in the target organs. This combination of polyplex micelles and CS holds great promise for safe and efficient gene introduction in clinical settings. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据