4.5 Article

Hydrochemistry of urban groundwater, Seoul, Korea: The impact of subway tunnels on groundwater quality

期刊

JOURNAL OF CONTAMINANT HYDROLOGY
卷 101, 期 1-4, 页码 42-52

出版社

ELSEVIER
DOI: 10.1016/j.jconhyd.2008.07.008

关键词

Urban groundwater; Subway tunnel seepage; Water quality; Hydrochemical modeling; Redox condition; Dissolved Mn and Fe

资金

  1. Ministry of Construction and Transportation of Korea [05CCTRD09]

向作者/读者索取更多资源

Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m(3) year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n=72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe. NH4+, NO3-, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L-1, max. 5.58 mg L-1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据