4.7 Article

Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan-Shepp ridge polynomials, Chebyshev-Fourier Series, cylindrical Robert functions, Bessel-Fourier expansions, square-to-disk conformal mapping and radial basis functions

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 230, 期 4, 页码 1408-1438

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2010.11.011

关键词

Pseudospectral; Zernike polynomials; Radial basis functions; Chebyshev polynomials; Conformal mapping; Cosine lemniscate function; Lemniscate elliptic functions; Approximation on a disk; Poisson equation; Laplace equation

资金

  1. National Science Foundation [OCE 0451951, ATM 0723440]
  2. University of Michigan

向作者/读者索取更多资源

We compare seven different strategies for computing spectrally-accurate approximations or differential equation solutions in a disk. Separation of variables for the Laplace operator yields an analytic solution as a Fourier-Bessel series, but this usually converges at an algebraic (sub-spectral) rate. The cylindrical Robert functions converge geometrically but are horribly ill-conditioned. The Zernike and Logan-Shepp polynomials span the same space, that of Cartesian polynomials of a given total degree, but the former allows partial factorization whereas the latter basis facilitates an efficient algorithm for solving the Poisson equation. The Zernike polynomials were independently rediscovered several times as the product of one-sided Jacobi polynomials in radius with a Fourier series in theta. Generically, the Zernike basis requires only half as many degrees of freedom to represent a complicated function on the disk as does a Chebyshev-Fourier basis, but the latter has the great advantage of being summed and interpolated entirely by the Fast Fourier Transform instead of the slower matrix multiplication transforms needed in radius by the Zernike basis. Conformally mapping a square to the disk and employing a bivariate Chebyshev expansion on the square is spectrally accurate, but clustering of grid points near the four singularities of the mapping makes this method less efficient than the rest, meritorious only as a quick-and-dirty way to adapt a solver-for-the-square to the disk. Radial basis functions can match the best other spectral methods in accuracy, but require slow non-tensor interpolation and summation methods. There is no single best bash for the disk, but we have laid out the merits and flaws of each spectral option. (C) 2010 Elsevier Inc. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据