4.7 Article

Time and frequency dependent rheology of reactive silica gels

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 413, 期 -, 页码 159-166

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.09.035

关键词

Silica gel; Rheology; Structural relaxation

资金

  1. Deutsche Forschungsgemeinschaft [SPP 1273]
  2. Kolloidverfahrenstechnik
  3. international Max-Planck Research School (IMPRS)

向作者/读者索取更多资源

In a mixture of sodium silicate and low concentrated sulfuric acid, nano-sized silica particles grow and may aggregate to a system spanning gel network. We studied the influence of the finite solubility of silica at high pH on the mechanical properties of the gel with classical and piezo-rheometers. Direct preparation of the gel sample in the rheometer cell avoided any pre-shear of the gel structure during the filling of the rheometer. The storage modulus of the gel grew logarithmically with time with two distinct growth laws. The system passes the gel point very quickly but still shows relaxation at low frequency, typically below 6 rad/s. We attribute this as a sign of structural rearrangements due to the finite solubility of silica at high pH. The reaction equilibrium between bond formation and dissolution maintains a relatively large bond dissolution rate, which leads to a finite life time of the bonds and behavior similar to physical gels. This interpretation is also compatible with the logarithmic time dependence of the storage modulus. The frequency dependence was more pronounced for lower water concentrations, higher temperatures and shorter reaction times. With two relaxation models (the modified Cole-Cole model and the empirical Baumgaertel-Schausberger-Winter model) we deduced characteristic times from the experimental data. Both models approximately described the data and resulted in similar relaxation times. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据