4.7 Article

Physicochemical characterization of silylated functionalized materials

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 344, 期 2, 页码 603-610

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2010.01.026

关键词

Silylation; Mesoporous silicas; Clays; Grafting; Organosilanes

资金

  1. FCT Fundacao para a Ciencia e a Tecnologia (FCT) [BPD/26559/2006]
  2. FEDER [PPCDT/CTM/56192/2004]

向作者/读者索取更多资源

Silylation of several materials where the surface area arises from the internal pores (MCM-41 and FSM-16) or is essentially external (silica gel, and clays) was performed using three organosilanes: (3-aminopropyl)-triethoxysilane (APTES), 4-(triethoxysilyl)aniline (TESA) and (3-mercaptopropyl)trimethoxysilane (MPTS). The materials were characterized by nitrogen adsorption-desorption at -196 degrees C, powder XRD, XPS, bulk chemical analysis, FTIR and Si-29 and C-13 MAS NMR. For MCM-41 and FSM-16 the highest amounts of organosilane are obtained for APTES, while for the remaining materials the highest amounts are for MPTS; TESA always anchored with the lowest percentage. In terms of surface chemical analysis, TESA anchored with the highest contents irrespectively of the material, and the opposite is registered for MPTS. Comparison of bulk vs surface contents indicate that TESA is mainly anchored at the material external surface. Moreover, with N or S (surface and bulk) contents expressed per unit of surface area, MCM-41 and FSM-16 (internal porosity) show the lowest amounts of silane; the highest amounts of silane per unit of surface area are obtained for the clays. Grafting of the organosilanes to the surface hydroxyl groups was corroborated by FTIR and Si-29 and C-13 MAS NMR. Furthermore, NMR data suggested that TESA and APTES grafted mostly through a bidentate approach, whereas MPTS grafted by a monodentate mechanism. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据