4.7 Article

Microstructural characterization of lysophosphatidylcholine micellar aggregates: The structural basis for their use as biomembrane mimics

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 336, 期 2, 页码 827-833

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2009.04.008

关键词

Lysophosphatidylcholine (lysoPC); Critical micelle concentration (CIVIC); Nuclear magnetic resonance (NMR); Electron paramagnetic resonance (EPR)

向作者/读者索取更多资源

Lysophosphatidylcholines are widely used as biomembrane mimics. In order to furnish a structural basis for this application, in this work the self-aggregation behaviour of n-acyl-lysophospliatidylcholines (C(n)lysoPC, n = 6,8,10,12), in aqueous Solution has been investigated by the PGSTE-NMR and spin probing EPR techniques at 25 degrees C. The experimental data show that C(n)lysoPCs behave as zwitterionic surfactants, and permit evaluation of the influence of the acyl chain length on the phospholipid micellization. For all the C(n)lysoPCs considered, the phospholipid intradiffusion coefficient trend shows a slope change corresponding to the Critical micelle concentration (CMC). In the micellar composition range, solubilized tetramethylsilane (TMS) molecules were used to determine the micelle intradiffusion coefficient, from which the aggregate radii and the aggregation numbers were obtained. The solvent intradiffusion coefficient in the C(n)lysoPC aqueous mixtures has been also measured. The results show that the C(n)lysoPC micelles present a thick external layer constituted by strongly hydrated glycerophosphocholine groups. The ability of this layer to embed either anionic or cationic guest molecules has been studied by EPR spectroscopy, employing 3-carboxy-PROXYL in its deprotonated form (CP-) or TEMPO-choline (TC) as spin probes. In all the considered systems, the nitrogen isotropic hyperfine coupling constant of the spin probe, A(N), decreases and the correlation time, tau(C), increases with increasing phospholipid molality. The results show that C(n)lysoPC micelles can establish a variety of interaction with different guests. In fact, CP- anions interact with the C(n)lysoPC choline groups adsorbing on the micelle surface, while TC cations interacting with the C(n)lysoPC phosphate groups are embedded in thick external layer of the micelles. (C) 2009 Elsevier Inc, All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Characterization of anthropogenic organic matter and its interaction with direct yellow 27 in wastewater: Experimental results and perspectives of resource recovery

Sicong Yao, Massimiliano Fabbricino, Ludovico Pontoni, Marco Race, Francesco Parrino, Luigi Savignano, Gerardino D'Errico, Yao Chen

Summary: The concept of natural organic matter of anthropogenic origin is introduced, and its characteristics and interaction with chemical pollutants are investigated using various analytic methodologies. The results indicate that the presence of AOM can significantly influence the fate, transport, and toxicity of pollutants in the environment.

CHEMOSPHERE (2022)

Article Chemistry, Multidisciplinary

Interfacial Charge Transfer Complexes in TiO2-Enediol Hybrids Synthesized by Sol-Gel

Claudio Imparato, Gerardino D'Errico, Wojciech Macyk, Marcin Kobielusz, Giuseppe Vitiello, Antonio Aronne

Summary: Metal oxide-organic hybrid semiconductors have specific properties determined not only by their composition but also by the synthesis procedure and functionalization method. This study presents a sol-gel route as an alternative strategy to synthesize titanium oxide-based materials containing organic molecules coordinated to the metal. The effect of ligand molecular structure on the surface properties of the hybrids is investigated.

LANGMUIR (2022)

Article Biochemistry & Molecular Biology

Effect of Oxidative Stress on Reproduction and Development

Giulia Guerriero, Gerardino D'Errico

ANTIOXIDANTS (2022)

Article Chemistry, Applied

Identification of black sturgeon caviar pigment as eumelanin

Lucia Panzella, Kenneth Benning, Darren N. Nesbeth, Brunella Setaro, Gerardino D'Errico, Alessandra Napolitano, Marco D'Ischia

Summary: This study purified the pigment of black sturgeon caviar and identified it as a typical black pigment through chemical degradation and electron paramagnetic resonance (EPR) evidence. Analysis of oxidative degradation mixtures revealed the formation of a specific marker of eumelanin pigments, providing a novel molecular basis for the valorization of black caviar and production wastes in food chemistry and diet.

FOOD CHEMISTRY (2022)

Article Chemistry, Physical

Recent Advances in Endocrine Disrupting Compounds Degradation through Metal Oxide-Based Nanomaterials

Claudio Imparato, Aurelio Bifulco, Brigida Silvestri, Giuseppe Vitiello

Summary: Endocrine Disrupting Compounds (EDCs) are emerging contaminants that pose toxicity and danger to ecosystems and human health. The presence of EDCs in water and wastewater has become a global problem. Catalytic and photocatalytic degradation processes using metal oxide-based nanostructured materials have been widely explored for the removal of EDCs from water. This review summarizes recent advances in the degradation processes of various classes of EDCs using novel metal oxide-based nanomaterials.

CATALYSTS (2022)

Article Polymer Science

Shall We Tune? From Core-Shell to Cloud Type Nanostructures in Heparin/Silica Hybrids

Giulio Pota, Giuseppe Vitiello, Virginia Venezia, Francesca Della Sala, Assunta Borzacchiello, Aniello Costantini, Luigi Paduano, Leide P. Cavalcanti, Fabiana Tescione, Brigida Silvestri, Giuseppina Luciani

Summary: Hybrid heparin/silica nanoparticles were synthesized in this study, with silica acting as a templating agent for heparin supramolecular organization. The nanoparticles exhibited different supramolecular organization leading to distinct behaviors in drug encapsulation and release.

POLYMERS (2022)

Review Chemistry, Physical

Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts

Virginia Venezia, Giulio Pota, Brigida Silvestri, Aniello Costantini, Giuseppe Vitiello, Giuseppina Luciani

Summary: This article reviews the state of the art in producing hierarchical photocatalysts. It introduces different synthesis strategies and critically compares available methods based on their envisaged applications.

CATALYSTS (2022)

Article Microbiology

Extremophilic Microorganisms for the Green Synthesis of Antibacterial Nanoparticles

Ida Romano, Giuseppe Vitiello, Noemi Gallucci, Rocco Di Girolamo, Andrea Cattaneo, Annarita Poli, Paola Di Donato

Summary: The study demonstrates that extremophilic microorganisms can be valuable producers of biologically active nanoparticles, but further experiments are needed to improve synthesis protocols and downstream processes.

MICROORGANISMS (2022)

Article Chemistry, Physical

The anticancer peptide LL-III alters the physico-chemical properties of a model tumor membrane promoting lipid bilayer permeabilization

Marco Campanile, Rosario Oliva, Gerardino D'Errico, Pompea Del Vecchio, Luigi Petraccone

Summary: LL-III is an anticancer peptide that can translocate across tumor cell membranes. However, the mechanism through which it enters the cell cytoplasm is still unknown. In this study, we used physico-chemical techniques to characterize the interaction of LL-III with liposomes resembling the lipid matrix of the tumor cell membrane. Our results show that the peptide selectively interacts with the model tumor cell membrane without disrupting the lipid bilayer, but alters its properties by promoting lipid reorganization and increasing membrane permeability.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Review Biochemistry & Molecular Biology

Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure-Property Relationships

Rodolfo Esposito, Immacolata Speciale, Cristina De Castro, Gerardino D'Errico, Irene Russo Krauss

Summary: To protect human and environmental health, researchers are focusing on discovering and developing new molecules with high biocompatibility and biodegradability. Surfactants are particularly urgent in this matter, and biosurfactants derived from microorganisms are a promising alternative. Rhamnolipids, a well-known family of biosurfactants, have been extensively studied for their production and physicochemical characterization, although a clear structure-function relationship is still lacking. This review aims to provide a comprehensive discussion of the physicochemical properties of rhamnolipids under different solution conditions and their structure, while also addressing unresolved issues for their potential replacement of conventional surfactants.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Biochemistry & Molecular Biology

A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications

Rita Argenziano, Maria Laura Alfieri, Noemi Gallucci, Gerardino D'Errico, Lucia Panzella, Alessandra Napolitano

Summary: The search for new synthetic melanin-related pigments with antioxidant and photoprotective properties is important for dermo-cosmetic purposes. In this study, a melanin derived from 5,6-dihydroxyindole-2-carboxylic acid (DHICA) was synthesized and found to have similar structural properties to DHICA melanin. The synthesized pigment demonstrated stronger UV-visible absorption and improved solubility compared to DHICA melanin. Furthermore, the pigment exhibited marked antioxidant properties and enhanced inhibitory action against lipid peroxidation. These findings suggest that the melanin derived from DHICA has potential as a functional ingredient in dermo-cosmetic formulations.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Chemistry, Multidisciplinary

Expanding Knowledge of Methylotrophic Capacity: Structure and Properties of the Rough-Type Lipopolysaccharide from Methylobacterium extorquens and Its Role on Membrane Resistance to Methanol

Flaviana Di Lorenzo, Simone Nicolardi, Roberta Marchetti, Adele Vanacore, Noemi Gallucci, Katarzyna Duda, Ferran Nieto Fabregat, Ha Ngoc Anh Nguyen, Djamel Gully, James Saenz, Eric Giraud, Luigi Paduano, Antonio Molinaro, Gerardino D'Errico, Alba Silipo

Summary: The ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source is influenced by the composition and function of the lipopolysaccharide (LPS) in the outer membrane. The LPS of M. extorquens is unique, with non-phosphorylated and heavily O-methylated core oligosaccharides, and a distinctive lipid A structure. These chemical features impact the resistance of the membrane to methanol, regulating membrane ordering and dynamics.

JACS AU (2023)

Article Engineering, Environmental

Exploiting bioderived humic acids: A molecular combination with ZnO nanoparticles leads to nanostructured hybrid interfaces with enhanced pro-oxidant and antibacterial activity

Virginia Venezia, Mariavittoria Verrillo, Noemi Gallucci, Rocco Di Girolamo, Giuseppina Luciani, Gerardino D'Errico, Luigi Paduano, Alessandro Piccolo, Giuseppe Vitiello

Summary: The waste-to-wealth strategy promotes the design of new value-added materials using biowastes. Humic Acids (HA) are intriguing due to their supramolecular associations, which enable adsorption, chelation, redox behavior, and antibacterial activity. Combining HA with semiconductor nanoparticles allows for the creation of nanostructured hybrids with advanced properties. The study provides insights into producing low-cost organo-inorganic nanomaterials with redox and biocide properties to address environmental and health issues.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Engineering, Environmental

A tunable deep eutectic solvent-based processing for valorization of chestnut wood fiber as a source of ellagic acid and lignin

Federica Moccia, Noemi Gallucci, Samuele Giovando, Antonio Zuorro, Roberto Lavecchia, Gerardino 'Errico, Lucia Panzella, Alessandra Napolitano

Summary: Three different DES-based extraction methods were designed and optimized for the recovery of antioxidants from chestnut wood fiber. A sequential two-step extraction method was eventually designed to selectively obtain samples enriched with ellagic acid and lignin.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2022)

Article Chemistry, Physical

Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system

Maria Laura Alfieri, Marina Massaro, Marco D'Ischia, Gerardino D'Errico, Noemi Gallucci, Michelangelo Gruttadauria, Mariano Licciardi, Leonarda F. Liotta, Giuseppe Nicotra, Gianfranco Sfuncia, Serena Riela

Summary: This study achieved the site-selective functionalization of HNTs with polydopamine by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface. The introduction of PDA coating affected the aqueous stability of the nanotubes and induced a local thermal rise under near-infrared irradiation.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Article Chemistry, Physical

Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS2/N-doped carbon anode for potassium-ion battery

Panpan Zhang, Xu Wang, Yangyang Yang, Haifeng Yang, Chunsheng Lu, Mingru Su, Yu Zhou, Aichun Dou, Xiaowei Li, Xiaochuan Hou, Yunjian Liu

Summary: In this study, the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2HMoS2/NC was investigated using Cobalt (Co) as an example. Co doping was found to effectively improve the electronic conductivity and active site areas of 2H-MoS2/NC at different positions, optimizing the adsorption and diffusion capability of potassium ions. Furthermore, the study revealed the optimal roles of different types of nitrogen atoms in kinetic adsorption, diffusion, and interfacial stability of potassium ions. These findings provide guidance for the experimental design of high rate 2H-MoS2/NC electrode materials and the optimal design of other functional composite materials.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution

Zeeshan Ajmal, Mahmood Ul Haq, Shahid Zaman, M. K. Al-Muhanna, Anuj Kumar, Mohammed M. Fadhali, Siwar Ben Hadj Hassine, Muhammas Qasim, K. F. Alshammari, Ghulam Abbas Ashraf, Abdul Qadeer, Adil Murtaza, Sulaiman Al-Sulaimi, Huaqiang Zeng

Summary: This study presents a novel heterojunction structure (SrTiO3/CN-TAL10.0) for enhanced photocatalytic water splitting (PWS). The incorporation of thiophenedicarboxaldehyde (TAL) through copolymerization significantly improves the photocatalytic activity of carbon nitride (CN) while maintaining its photostability performance. The optimized composition allows efficient isolation of photoinduced charge carriers and enhanced charge transport, resulting in a remarkable increase in overall photocatalytic efficiency.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization

Angela Arnosa-Prieto, Patricia Diaz-Rodriguez, Manuel A. Gonzalez-Gomez, Pelayo Garcia-Acevedo, Lisandra de Castro-Alves, Yolanda Pineiro, Jose Rivas

Summary: Macrophages can exhibit different phenotypes depending on the microenvironment and the characteristics of magnetic iron oxide nanoparticles (MNPs). This study demonstrates that the concentration and morphology of MNPs can influence the polarization of macrophages. The findings have implications for therapeutics targeting tissue regeneration and tumor progression.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance

Yu Fang, Cheng-Ye Zhu, Hao-Cheng Yang, Chao Zhang, Zhi-Kang Xu

Summary: This study demonstrates the advantages of vacuum-assisted interfacial polymerization (VAIP) in fabricating polyimide nanofiltration membranes. By using vacuum filtration, aqueous solutions of PIP can be evenly distributed on different microfiltration substrates, leading to the fabrication of uniform and ultra-thin polyamide layers with excellent performance. The membranes exhibit high rejection rates and water permeance, as well as satisfactory long-term stability.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Comparing polymer-surfactant complexes to polyelectrolytes

Isaac J. Gresham, Edwin C. Johnson, Hayden Robertson, Joshua D. Willott, Grant B. Webber, Erica J. Wanless, Andrew R. J. Nelson, Stuart W. Prescott

Summary: Understanding the interactions between polymers and surfactants is crucial for optimizing commercial systems. This study tested the behavior of polymer-surfactant systems, revealing that they do not behave like polyelectrolytes in the presence of salt. Additionally, the structure of polymer-surfactant complexes under confinement differs from that of polyelectrolytes.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics

Yunxiao Xie, Cui Liu, Jie Zhang, Yan Li, Bin Li, Shilin Liu

Summary: This study aimed to improve the microstructure and rheological properties of W/W Pickering emulsions by crosslinking sodium alginate at the water-water interface, thereby enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes

Sang Ho Lee, Yige Sun, Patrick S. Grant

Summary: This research developed an effective approach to enhance the charging rates of lithium ion batteries (LIBs) by strategically incorporating carbon nanotube (CNT) conductivity boosters into Li4Ti5O12 (LTO) electrodes. Multi-layer architectures comprising CNT-rich and CNT-free LTO electrode layers were manufactured using a layer-by-layer spray coating method to promote charge transfer kinetics of high mass loading electrodes. The best performing multi-layer was paired with a spray-coated LiFePO4 (LFP) positive electrode, resulting in attractive power performance that outperformed conventional LTO || LFP combinations.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Defect engineering induces Mo-regulated Co9Se8/FeNiSe heterostructures with selenium vacancy for enhanced electrocatalytic overall water splitting in alkaline

Jingwei Liang, Shaobin Li, Fengbo Li, Li Zhang, Yufeng Jiang, Huiyuan Ma, Kun Cheng, Liang Qing

Summary: A molybdenum-regulated self-supporting electrode material with rich vacancy defects has been successfully synthesized and shows exceptional catalytic activities and stability for electrocatalytic overall water splitting. This study provides a new perspective for the design and synthesis of non-precious metal bifunctional electrocatalysts.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Surfactant-free microemulsions (SFMEs) as a template for porous polymer synthesis

Jonas Blahnik, Jennifer Schuster, Rainer Mueller, Eva Mueller, Werner Kunz

Summary: This study investigates the relationship between the morphology of PMMA monopolymers and PMMA-PHEMA copolymers with the expected nature of surfactant-free microemulsions (SFMEs) before polymerization. It is found that previously mesostructured, surfactant-free mixtures can produce porous polymers of different morphologies, while unstructured, oil-rich regions lead to solid, transparent polymers without nanostructured morphologies. Additionally, a surfactant-based reference system shows similar phase behavior and polymer morphologies as the comparable surfactant-free system, indicating the importance of the hydrotropic behavior of HEMA in this system.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead

Zheng-Fen Pu, Wen-Zhi She, Rong Sheng Li, Qiu-Lin Wen, Bi-Chao Wu, Chun-Hua Li, Jian Ling, Qiue Cao

Summary: This study synthesized two framework-isomeric covalent organic frameworks (COFs) and discovered that the light scattering signal of COFs can be used for the analytical detection of lead ions. By controlling synthesis conditions and introducing regulators, the morphology of COFs could be controlled and framework-isomeric COFs could be precisely synthesized.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Preparation and dynamic color-changing study of fluorescent polymer nanoparticles for individualized and customized anti-counterfeiting application

Yuchen Weng, Ying Hong, Jingyu Deng, Sicheng Cao, Li-Juan Fan

Summary: This paper reports the preparation of dynamic color-changing fluorescent polymer nanoparticles (PNPs) by constructing a fluorescence resonance energy transfer (FRET) pair. The PNPs show excellent anti-counterfeiting effects and reproducibility. The study demonstrates a promising encryption strategy that can achieve multiple outputs with simple operation.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range

Guodong Liu, Zijian Wang, Jianing Wang, Hanbin Liu, Zhijian Li

Summary: This study investigates the combination of multicolor switchable polyaniline (PANI) electrode and 1-methyl-4,4'-bipyridyl iodide (MBI), which demonstrates superior optical properties in visible and near-infrared light modulation, as well as excellent electrochemical performances. This combination can be used to develop novel electrochromic devices for applications in smart packaging, smart labels, and flexible smart windows.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Facile constructing Ti3C2Tx/TiO2@C heterostructures for excellent microwave absorption properties

Huying Yan, Yang Guo, Xingzhi Bai, Jiawei Qi, Haipeng Lu

Summary: By modifying Ti3C2Tx through heterogeneous interface engineering, optimized impedance matching is achieved, leading to enhanced electromagnetic wave absorption performance.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking μm-sized cell structures

Kehu Zhang, Yang Zhou, Silvia Moreno, Simona Schwarz, Susanne Boye, Brigitte Voit, Dietmar Appelhans

Summary: This article presents an advanced crosslinking strategy to fabricate clustered polymersomes using host-guest interactions. By controlling the input of crosslinker and environmental conditions, reversible aggregation and disassembly of these polymersomes can be achieved. The size and structure of these clustered polymersomes can be regulated and visualized through a fluorescent enzymatic cascade reaction.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation

Junjie Xu, Weixiong Huang, Ruiling Li, Li Li, Jinjin Ma, Jiaou Qi, Haiyan Ma, Min Ruan, Lilin Lu

Summary: In this study, a potassium doped palladium catalyst was developed for acetylene hydrogenation, showing excellent catalytic performance and durability. The doping of potassium effectively weakened the adsorption of ethylene, improved ethylene selectivity, and lowered the barriers of hydrogen activation and transfer reactions.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)