4.4 Article

Anticorrosion properties of an epoxy zinc-rich composite coating reinforced with zinc, aluminum, and iron oxide pigments

期刊

JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH
卷 11, 期 5, 页码 727-737

出版社

SPRINGER
DOI: 10.1007/s11998-014-9580-0

关键词

Epoxy zinc rich; Corrosion resistance; Cathodic prevention; Electrochemical noise resistance; EIS

向作者/读者索取更多资源

The effects of lamellar aluminum (Al) and micaceous iron oxide (MIO) pigments on the anticorrosion properties of an epoxy zinc-rich coating were studied. To this end, the epoxy zinc-rich coatings containing 70% w/w spherical Zn particles, 60% w/w Zn + 10% w/w MIO, and 60% w/w Zn + 10% w/w Al were prepared. The electrochemical noise (ECN), potentiostatic polarization technique, and salt spray test were employed in order to investigate the anticorrosion performances of the zinc-rich coatings. The zinc-rich coatings morphologies were studied by scanning electron microscope (SEM) before and after the salt spray test. The open-circuit potential values were also measured at different immersion times. Results showed that MIO particles could enhance the cathodic protection duration of the zinc-rich coating by enhancing its barrier properties and reducing the zinc particles oxidation rate. It was also shown that Al particles reduced zinc-rich coating sacrificial behavior at short immersion times and increased it at long immersion times. Unlike MIO particles, Al particles behaved both as barrier and sacrificial pigment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据