4.6 Article

Tailored quantum statistics from broadband states of light

期刊

NEW JOURNAL OF PHYSICS
卷 17, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/17/4/043039

关键词

correlation function; amplified spontaneous emission; multimode Gaussian states; photon statistics; quantum fluctuation; quantum dot superluminescent diodes; mixed light

向作者/读者索取更多资源

We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum state as a multimode phase-randomized Gaussian density operator. The validity of this model is proven in two subsequent experiments using fast two-photon-absorption detection observing second-order equal-time and second-order fully time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the photon statistics when the number of contributing longitudinal modes is systematically reduced by applying well-controlled optical feedback. In a second experiment, we add coherent light from a single-mode laser diode to quantum dot superluminescent diode broadband radiation. Tuning the power ratio, we realize tailored second-order correlations ranging from Gaussian to Poissonian statistics. Both experiments are very well matched by theory, thus giving first insights into the quantum properties of radiation from quantum dot superluminescent diodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据