4.6 Article

Probing the morphology and anti-organic fouling behaviour of a polyetherimide membrane modified with hydrophilic organic acids as additives

期刊

NEW JOURNAL OF CHEMISTRY
卷 39, 期 8, 页码 6141-6150

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nj01095k

关键词

-

资金

  1. Deanship of Scientific Research at the King Saud University [RGP-VPP-207]

向作者/读者索取更多资源

A facile approach for the preparation of an organic antifouling polymer membrane has been developed using low molecular weight organic acids as additives. The presence of these additives in the membrane was analysed by FTIR spectroscopy. The properties of the modified membranes were investigated in terms of contact angle, water uptake capacity, SEM and AFM analysis. These additives exerted a strong impact on the rheological properties of the casting solution, thereby altering the membrane morphology, surface roughness, water flux and the hydrophilicity of the membranes, as compared to those of the pristine polyetherimide (PEI) membrane. The organic antifouling properties of the modified membrane were analysed by filtering both bovine serum albumin (BSA) and humic acid solutions. The results showed that the additives exhibited a remarkable improvement in the antifouling properties (FRR of 72%) and a humic acid rejection of up to 86%. These outcomes offer new insights into the use of cheaper and readily available organic acids as additives, compared to the traditional, synthetic polymer materials as additives in membrane preparation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Photocatalytic membranes: a new perspective for persistent organic pollutants removal

Mahesan Naidu Subramaniam, Pei Sean Goh, Devagi Kanakaraju, Jun Wei Lim, Woei Jye Lau, Ahmad Fauzi Ismail

Summary: The article delves into the roles of photocatalysis and membrane technology in hybrid photocatalytic membranes for treating wastewater containing persistent organic pollutants (POP). It covers critical reviews on POP's impact, origins, and the challenges and future directions in this field, as well as discussing the fundamentals of photocatalytic mechanism and current trends in photocatalyst design.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2022)

Article Polymer Science

Polyaniline decorated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells application

Lukka Thuyavan Yogarathinam, Juhana Jaafar, Ahmad Fauzi Ismail, Pei Sean Goh, Mohd Hilmi Bin Mohamed, Mohamad Fahrul Radzi Hanifah, Arthanareeswaran Gangasalam, Jerome Peter

Summary: Graphene oxide and conductive polyaniline coated graphene oxide were used as additives in sulfonated poly(ether ether ketone) nanocomposite membrane to reduce methanol crossover in direct methanol fuel cells. The modified membrane exhibited increased water uptake, ion exchange capacity, and proton conductivity, as well as improved oxidative stability and selectivity for DMFC applications.

POLYMERS FOR ADVANCED TECHNOLOGIES (2022)

Article Biochemistry & Molecular Biology

Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress

Faiz Izzuddin Azmi, Pei Sean Goh, Ahmad Fauzi Ismail, Nidal Hilal, Tuck Whye Wong, Mailin Misson

Summary: Membrane surface modification is a favored strategy to enhance membrane-based separation performance. Biomolecules, with their unique structural and chemical properties, have gained attention as potential modifiers for liquid separation membranes. These biomolecules exhibit high surface hydrophilicity and antimicrobial properties, making them attractive alternatives for the development of high-performance membranes.

MEMBRANES (2022)

Article Engineering, Chemical

Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination

Zhi Chien Ng, Woei Jye Lau, Gwo Sung Lai, Jianqiang Meng, Huihui Gao, Ahmed Fauzi Ismail

Summary: In this study, a novel interlayer-assisted interfacial polymerization technique with the inclusion of graphene oxide (GO) was used to improve the permeability/selectivity trade-off, chlorine attack, and fouling issues of reverse osmosis membranes. The results showed that the PEI-interlayered thin film composite (iTFC) membrane exhibited higher pure water permeance and NaCl rejection compared to the conventional TFC (cTFC) membrane. The inclusion of 0.01 wt/v% GO further enhanced the performance of the iTFC membrane, producing a PEI-interlayered thin film nanocomposite (iTFN-10) membrane with greater pure water permeance without compromising rejection. The iTFN-10 membrane also demonstrated better antifouling and antibacterial properties compared to commercial membranes.

DESALINATION (2022)

Article Environmental Sciences

The Effect of BPA-Treated Water on the Small Intestine via an In Vivo Study

Roziana Kamaludin, Zatilfarihiah Rasdi, Mohd Hafiz Dzarfan Othman, Siti Hamimah Sheikh Abdul Kadir, Mohd Yusri Idorus, Jesmine Khan, Wan Nor I'zzah Wan Mohamad Zain, Ahmad Fauzi Ismail, Mukhlis A. Rahman, Juhana Jaafar

Summary: This study found that BPA exposure can affect the small intestine and intestinal barrier of pregnant rats and their fetuses, but BPA-treated water through photocatalytic membrane does not have detrimental effects on the gastrointestinal tract.

TOXICS (2022)

Article Polymer Science

Influence of magnetic casting on the permeability and anti-fouling properties of a novel iron oxide/alumina/polysulfone mixed matrix membrane

Targol Hashemi, Mohammad Reza Mehrnia, Aydin Marandi, Ahmad Fauzi Ismail

Summary: Novel mixed matrix membranes were prepared using magnetic casting and nanocomposite technology, resulting in increased water flux and improved anti-fouling properties.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Chemistry, Multidisciplinary

Selectively mixed matrix hemodialysis membrane for adequate clearance of p-cresol by the incorporation of imprinted zeolite

Yanuardi Raharjo, Ahmad Fauzi Ismail, Mohd Hafiz Dzarfan Othman, Mochamad Zakki Fahmi, Saiful, Djoko Santoso, Mochamad Ifan Nugroho, Diana Merna, Maipha Deapati Arief, Risma Chikita Pratama

Summary: This study aimed to develop a novel imprinted zeolite (IZC) and incorporate it into a polyethersulfone (PES) and poly(vinyl pyrrolidone) (PVP) mixed matrix membrane (HF-MMM) for hemodialysis treatment. The optimized parameters showed that this membrane has the potential to effectively remove uremic toxins.

RSC ADVANCES (2023)

Review Chemistry, Multidisciplinary

Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide

Pei Sean Goh, Zahra Samavati, Ahmad Fauzi Ismail, Be Cheer Ng, Mohd Sohaimi Abdullah, Nidal Hilal

Summary: Membrane technology has gained popularity in industries for separation processes, desalination, and wastewater treatment. The development of nanocomposite membranes that merge nanotechnology and membrane technology has become a rapidly growing research area, motivated by the need for high-performance liquid separation membranes. The unique morphology and topology of nanostructured materials, such as TiO2, have attracted attention due to their hydrophilicity, antibacterial, and photocatalytic properties. This review provides an overview of the modifications of liquid separation membranes using TiO2 as an example of multidimensional nanomaterials, discussing their performance and advantages.

NANOMATERIALS (2023)

Article Environmental Sciences

Fabrication and characterization of dual-layer hollow fibre membranes incorporating poly(citric acid)-grafted GO with enhanced antifouling properties for water treatment

Noresah Said, Woei Jye Lau, Muhammad Nidzhom Zainol Abidin, Amir Mansourizadeh, Ahmad Fauzi Ismail

Summary: In this study, poly(citric acid)-grafted graphene oxide (PGO) was incorporated into single-layer hollow fiber (SLHF) and dual-layer hollow fiber (DLHF) membranes to improve their antifouling properties during water treatment. The optimized PGO loading of 0.7 wt% in SLHF membrane resulted in higher water permeability and bovine serum albumin rejection compared to the neat membrane. Similarly, introducing 0.7 wt% PGO only to the outer layer of DLHF membrane improved its antifouling properties and increased the rejection rate of bovine serum albumin to 97.7%.

ENVIRONMENTAL TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Evaluation of casein protein transport through surface functionized membranes using irreversible thermodynamics and concentration polarisation model

A. Sumisha, G. Arthanareeswaran, A. F. Ismail

Summary: This study mainly focuses on the analysis of casein protein transport characteristics through ultrafiltration membranes. Polysulfone-based polymer membranes modified with different materials are used. The experimental results show that the transport of casein is controlled by convection.

SEPARATION SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Chemical

Novel translucent hollow fiber polyvinylidene fluoride photocatalytic membrane for highly efficient oil-produced wastewater treatment: The role of translucency on degradation efficiency

Komathi Kannathasan, Juhana Jaafar, Nuor Sariyan Suhaimin, Nurul Natasha Mohammad Jafri, Sadaki Samitsu, N. H. Alias, A. F. Ismail, T. Matsuura, M. H. D. Othman, Mukhlis A. Rahman, Farhana Aziz, Norhaniza Yusof, Mohammed Rasool Qtaishat, M. I. Ismail

Summary: A novel method of fabricating translucent photocatalytic membrane using a modified morphological structure as a photocatalyst has been developed. The study highlights the effect of translucency on the efficiency of photocatalytic reactions.

CHEMICAL ENGINEERING RESEARCH & DESIGN (2023)

Article Engineering, Environmental

Treatment of radionuclide-containing wastewater using thin film composite reverse osmosis membrane with spray coating-assembled titania nanosheets

Nor Akalili Ahmad, Lih Jang Tam, Pei Sean Goh, Nurfirzanah Azman, Ahmad Fauzi Ismail, Khairulnadzmi Jamaluddin, Gangasalam Arthanareeswaran

Summary: In this study, a thin film composite (TFC) reverse osmosis (RO) membrane with high long-term stability and antifouling properties was developed by spray coating the polyamide (PA) layer with oppositely charged titania nanosheets (TNS). The manufactured membranes showed improved permeability and radionuclide rejection, making them suitable for treating radionuclide-containing wastewater. The findings highlight the potential of tailored TFC RO membranes in the treatment of radioactive wastewater.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Multidisciplinary Sciences

Fabrication of PES MMMs with Improved Separation Performances Using Two-Dimensional rGO/ZIF-8 and MoS2/ ZIF-8 Nanofillers

Noor Fauziyah Ishak, Nur Hidayati Othman, Najihah Jamil, Nur Hashimah Alias, Fauziah Marpani, Munawar Zaman Shahruddin, Lau Woei Jye, Ahmad Fauzi Ismail

Summary: Modifying polymeric membranes using ZIF-8 functionalized-2D nanofillers showed improved gas permeability and selectivity performance. The rGO/ZIF-8 and MoS2/ZIF-8 nanofillers were successfully synthesized and characterized. Addition of 10 wt% of each nanofiller to the PES solution resulted in MMMs with enhanced thermal stability. Compatibility between the 2D nanofillers and PES matrix was confirmed by FTIR and XRD analysis. The obtained MMMs exhibited significantly improved gas separation properties, demonstrating the potential of using 2D nanofillers for high-performance membranes.

PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Environmental

MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation

Nurul Syazana Fuzil, Nur Hidayati Othman, Nur Hashimah Alias, Fauziah Marpani, Muhammad Shafiq Mat Shayuti, Munawar Zaman Shahruddin, Mohd Rizuan Mohd Razlan, Norazah Abd Rahman, Woei Jye Lau, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Tutuk Djoko Kusworo, Anwar Ul-Hamid

Summary: In this study, the performance of membrane distillation (MD) was improved by coating MoS2-TiO2 on a PVDF-based hollow fiber membrane. The MoS2-TiO2/PP20 membrane showed enhanced hydrophobicity and porosity, leading to significantly improved MD performances. This work suggests that the MoS2-TiO2 coating can overcome the typical permeability/rejection rate trade-off effect and play a significant role in enhancing MD performances.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Review Engineering, Environmental

A crucial review on the challenges and recent gas membrane development for biogas upgrading

Nur Fajrina, Norhaniza Yusof, Ahmad Fauzi Ismail, Farhana Aziz, Muhammad Roil Bilad, Meshel Alkahtani

Summary: This article summarizes recent developments in membrane technology tailored for biogas upgrading, including the structure and classification of membrane materials as well as effective approaches to overcome the trade-off between permeability and selectivity. Additionally, other challenges are comprehensively discussed, and future research required to tackle biogas upgrading issues is projected.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Chemistry, Multidisciplinary

Two biomass material-derived self-doped (N/O) porous carbons from waste coriander and lilac with high specific surface areas and high capacitance for supercapacitors

Zihan Ma, Lishuang Wang, Tingting Chen, Guangning Wang

Summary: In this study, two kinds of 3D self-doped (N/O) lilac-based and coriander-based porous carbons with high performance have been prepared.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Nitrate anions embedded in rigid and cationic 3D energetic MOFs constructed by the chelating ligand towards insensitive energetic materials

Qin Wang, Yun-Fan Yan, Jiao-Lin Weng, Ying Huang, Fu Yang, Hao-Hui Xie, Fei Tan, Fa-Kun Zheng, Jian-Gang Xu

Summary: Balancing energy and mechanical sensitivities is a challenging issue in the field of energetic materials. This study constructed a 3D energetic metal-organic framework with nitrogen-rich ligand and NO3- anions. The framework demonstrated high stability, energy density, and excellent mechanical sensitivities, making it a potential insensitive energetic material.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Mangifera indica stone-assisted layered double hydroxide biocomposites: efficient contenders for reactive dye adsorption from aqueous sources

Marrium Saeed, Urooj Kamran, Amina Khan, Md Irfanul Haque Siddiqui, Hasan Jamal, Haq Nawaz Bhatti

Summary: In this study, magnesium-aluminum layered double hydroxides (Mg-Al-LDH) were synthesized using an environmentally friendly hydrothermal technique for adsorbing the dye reactive green 5 (RG5). To improve the adsorption capability, composites were prepared by combining Mg-Al-LDH with low-cost Mangifera indica stone biomass (MISB). The results showed that the composites had high adsorption capacities for RG5 dye and could be regenerated.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Unlocking the biosynthetic regulation role of polyketide alkaloid lydicamycins

Xuanlin Zhan, Xiaojie Li, Yunyan Zeng, Siyan Jiang, Chao Pan, Shiyu Pan, Jiaquan Huang, Heqian Zhang, Zhiwei Qin

Summary: This study reports on the potential prospects of natural products derived from the rhizosphere for the development of antibiotics and herbicides, as well as the advancements in cultivating a mutant strain that produces a substantial quantity of lydicamycins, a potent family for herbicide development.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

3D-printing of attapulgite monoliths with superior low-temperature selective catalytic reduction activity: the influence of thermal treatment

Jie Zhu, Jiangtao Yu, Linhua Zhu, Xiaoxiao Yu, Jixing Liu, Yanhong Chao, Jingzhou Yin, Peiwen Wu, Jian Liu, Wenshuai Zhu

Summary: This study successfully demonstrates the 3D printing of attapulgite monoliths and investigates the influence of thermal treatment on their properties. The thermal treated monoliths show superior catalytic performance at low temperatures.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Photo-electro concerted catalysis of a highly active Pt/CoP/C nanocomposite for the hydrogen evolution reaction

Yanzhu Ye, Yixiang Ye, Jiannan Cai, Zhongshui Li, Shen Lin

Summary: In this paper, a novel Pt/CoP/C photo-electro synergistic catalyst was successfully synthesized and its performance was investigated. The catalyst exhibited excellent photo-electro catalytic performance, with significantly higher hydrogen production compared to a commercial catalyst. The introduction of cobalt phosphide and the existence of Co3O4 were identified as key factors for enhancing the catalytic activity.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of a water-based TEOS-PDMS sol-gel coating for hydrophobic cotton and polyester fabrics

Nurul Hidayah Abu Bakar, Wan Norfazilah Wan Ismail, Hartina Mohd Yusop, Noreen Farzuhana Mohd Zulkifli

Summary: Hydrophobic coatings inspired by the lotus effect have gained popularity for their ability to solve various problems. The sol-gel method, utilizing silica, alumina, and titania, is explored as an environmentally friendly approach to produce water-based hydrophobic coatings. This study focuses on producing water-based hydrophobic coatings for cotton and polyester fabrics using a one-step sol-gel method. The coated fabrics exhibited improved hydrophobic properties, altered surface morphologies, and lower air permeability compared to uncoated fabrics. TEOS-PDMS coating provides a promising approach for enhancing the hydrophobic and surface properties of cotton and polyester fabrics.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Non-aqueous electrochemistry of rhodamine B acylhydrazone

Nikita Belko, Hanna Maltanava, Anatol Lugovski, Polina Shabunya, Sviatlana Fatykhava, Evgeny Bondarenko, Pavel Chulkin, Sergey Poznyak, Michael Samtsov

Summary: This study investigates the difference in electrochemical behavior between rhodamine B hydrazide and rhodamine B acylhydrazone, and finds that rhodamine B acylhydrazone exhibits higher reversibility in electrooxidation. These results can be applied for developing new sensors with desired electrochemical properties.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Exploring the magnetic, electric and magnetodielectric properties of (1-x)Ba0.9Ni0.1Ti0.9Mn0.1O3-xCo0.9Mn0.1Fe1.9V0.1O4 multiferroic composites

Showket Ahmad Bhat, Mohd Ikram

Summary: In this study, 0-3 particulate multiferroic composites were synthesized and characterized. The composites exhibited excellent ferroelectric and ferromagnetic properties, as well as high piezoelectric strain and magnetoelectric coupling effects.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

On the mechanochemical synthesis of C-scorpionates with an oxime moiety and their application in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction

Carla Gomes, Mariana Costa, Susana M. M. Lopes, Bernardo Albuquerque Nogueira, Rui Fausto, Jose A. Paixao, Teresa M. V. D. e Melo, Luisa M. D. R. S. Martins, Marta Pineiro

Summary: The development of sustainable processes requires the integration of green chemistry principles. In this study, a solvent-free synthesis method was developed to prepare new copper catalysts, which efficiently catalyze cycloaddition reactions under solvent-free mechanochemical conditions. Through this process, the principles of atom economy, reduction of solvents and auxiliaries, design for energy efficiency, and reduction of derivatives and catalysis are combined.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Phosphate ions improve the performance of BiFeO3 piezoelectric photoelectrochemical water splitting

Zhihua Liu, Jinzhe Li, Jianguo Zhou

Summary: This study demonstrates the enhancement of photoelectrochemical activity of BiFeO3 photoelectrodes through ion modification, which increases visible light absorption and active area, leading to improved PEC water splitting performance.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene with formic acid as a hydrogen source

Yisheng Zhang, Wensong Li, Jing Li, Fang Li, Wei Xue, Xinqiang Zhao, Yanji Wang

Summary: Pt/C and SO42-/ZrO2 were used as catalysts for the synthesis of p-aminophenol through the catalytic transfer hydrogenation of nitrobenzene in water with formic acid as the hydrogen source. The optimal Pt loading for PAP selectivity was found to be 1 wt%. The presence of different valence states of Pt affected both the nitrobenzene hydrogenation and formic acid decomposition. Among different solid acid catalysts tested, SO42-/ZrO2 exhibited the highest catalytic activity for p-aminophenol formation. Under the optimized reaction conditions, the conversion of nitrobenzene reached 80.0%, with a selectivity of 47.6% for p-aminophenol.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A CuMoO4 nanocatalyst for Csp2-O cross-couplings; easy access to nitrofen derivatives

Pradyota Kumar Behera, Papita Behera, Amlan Swain, Santosh Kumar Sahu, Ajeena Sahoo, Laxmidhar Rout

Summary: We have developed a simple and direct method for the synthesis of diaryl ether using an oxygen bridged bimetallic CuMoO4 nanocatalyst under mild reaction conditions. The catalyst exhibited tolerance towards a wide range of substrates with various functional groups. It is efficient and recyclable. This methodology allows easy access to nitrofen derivatives (herbicides) from unactivated 2,4-dichlorophenol, which are important for agriculture and pharmaceuticals.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A mechanistic study on coupling of CO2 and epoxide mediated by guanidine/TBAI catalysts

Yihua Fu, Yan Zhang, Changwei Hu, Zhishan Su

Summary: The mechanism of the reaction between CO2 and styrene oxide for cyclic carbonate was revealed using density functional theory calculations. The noncatalytic reaction occurred via a concerted mechanism, while in the presence of guanidine and tetrabutylammonium iodide (TBAI) co-catalysts, the epoxide ring-opening by nucleophilic attack of an iodide anion was predicted to be the rate-determining step. Guanidine acted as the H-bond donor to activate styrene oxide, facilitating the reaction with a lower activation barrier.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Localized surface plasmon resonance assisted photoredox catalysis using newly fabricated copper-nanorods: a decarboxylative approach towards carbon-hydrogen bond formation under visible light

Saikat Khamarui, Sirshendu Ghosh

Summary: Copper nanorods (Cu-NRs) exhibit significant plasmonic behavior and can act as efficient catalysts in redox processes and coupling. A benign decarboxylative approach, utilizing localized surface plasmon resonance (LSPR) assisted catalysis with Cu-NRs, has been developed for the production of alkane analogues from alkyl carboxylic acids under visible light. The catalyst shows a broad substrate scope and high functional group tolerance, without the need for an external oxidant or proton source. A plausible mechanism for this recyclable nano-catalyst has also been proposed based on control experiments.

NEW JOURNAL OF CHEMISTRY (2024)