4.4 Article

Novel microcatheter-based intracarotid delivery approach for MCAO/R mice

期刊

NEUROSCIENCE LETTERS
卷 597, 期 -, 页码 127-131

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2015.04.029

关键词

Middle cerebral artery occlusion; Carotid artery; Animal model; Mice

资金

  1. Hubei Province health and family planning scientific research project [WJ2015MB092]
  2. foundation of China Scholarship Council

向作者/读者索取更多资源

The intra-arterial (IA) model by microcatheter administration was an effective way to deliver drugs or cells to the brain. All of these models were carried out introduced in rat rather than mice for the difficult and technically challenging due to their small caliber. In 2014, Alejandro Santillan first introduced this model in mice and we found that most of the operational steps were similar with the middle cerebral artery occlusion and reperfusion (MCAO/R) model. We attempted to combine these two techniques into a single model in mice and discovered that this technique was indeed possible. In our work, 12C57B1/6J male mice were carried on middle cerebral artery occlusion for 60 min and then the intra-arterial microcatheter was placed into the internal carotid artery (ICA) from the external carotid artery (ECA). GFP-Luc-Pro labeled mNSCs were infused through the microcatheter and then the blood flow perfusion was reestablished subsequently. The results showed that all 12 mice were carried on successfully the model of middle cerebral artery occlusion, and the placement of the microcatheter and the mNSCs perfusion were completed smoothly without exception. Which means that it is logical to combine the two models into one in order to facilitate studying of stroke. Meanwhile, during the dissection, we found the variation of occipital artery (OA) was noticeable and we classified first time this variation into four categories to attempt to protect the OA. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据