4.7 Article

Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime Land Surface Temperatures Using Ground-Based Meteorology Station Observations

期刊

JOURNAL OF CLIMATE
卷 26, 期 5, 页码 1551-1560

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-12-00250.1

关键词

-

资金

  1. Canada Foundation for Innovation
  2. Canada Research Chairs Program
  3. Government of Canada International Polar Year Program (PPS Arctic Canada Project)
  4. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Environment Canada meteorological station hourly sampled air temperatures T-air at four stations in the southwest Yukon were used to identify cloud contamination in the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra clear-sky daytime land surface temperature (LST) and emissivity daily level-3 global 1-km grid product (MOD11A1, Collection 5) that is not flagged by the MODIS quality algorithm as contaminated. The additional cloud masking used qualitative ground-based sky condition observations, collected at two of the four stations, and coincident MODIS quality flag information. The results indicate that air temperature observed at a variety of discrete spatial locations having different land cover is highly correlated with MODIS LST collected at 1-km grid spacing. Quadratic relationships between LST and air temperature, constrained by ground observations of clear sky conditions, show less variability than relationships found under mainly clear and mostly cloudy sky conditions, and the more clouds observed in the sky coincides with a decreasing y intercept. Analysis of MODIS LST and its associated quality flags show a cold bias (<0 degrees C) in the assignment of the <= 3-K-average LST error, indicating MODIS LST has a maximum average error of <= 2 K over a warm surface (>0 degrees C). Analysis of two observation stations shows that unidentified clouds in MODIS LST are between 13% and 17%, a result that agrees well with previous studies. Analysis of daytime values is important because many processes are dependent on daylight and maximum temperature. The daytime clear-sky LST-T-air relationship observed for the good-quality confirmed cloud-free-sky MODIS LST quality flag can be used to discriminate cloud-contaminated grid cells beyond the standard MODIS cloud mask.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据