4.7 Article

A New Moist Turbulence Parameterization in the Community Atmosphere Model

期刊

JOURNAL OF CLIMATE
卷 22, 期 12, 页码 3422-3448

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JCLI2556.1

关键词

-

向作者/读者索取更多资源

A new moist turbulence parameterization is presented and implemented in the Community Atmosphere Model (CAM). It is derived from Grenier and Bretherton but has been heavily modified to improve its numerical stability and efficiency with the long time steps used in climate models. A goal was to provide a more physically realistic treatment of marine stratocumulus-topped boundary layers than in the current CAM. Key features of the scheme include use of moist-conserved variables, an explicit entrainment closure for convective layers, diagnosis of turbulent kinetic energy (TKE) for computation of turbulent diffusivities, an efficient new formulation of TKE transport as a relaxation to layer-mean TKE, and unified treatment of all turbulent layers in each atmospheric column. The scheme is compared with the default turbulence parameterizations in the CAM using three single-column modeling cases, using both operational and high vertical and time resolution. Both schemes performed comparably well on the dry convective boundary layer case. For a stable boundary layer case, the default CAM overdeepens the boundary layer unless its free-tropospheric mixing length is greatly reduced, whereupon the new scheme and default CAM again both perform well at both tested resolutions. A nocturnal stratocumulus case was much better simulated by the new scheme than the default CAM, with much less resolution sensitivity. Global climate simulations with the new scheme in tandem with a new shallow cumulus parameterization are presented in a companion paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据