4.5 Article

STRIATAL TYROSINE HYDROXYLASE-POSITIVE NEURONS ARE ASSOCIATED WITH L-DOPA-INDUCED DYSKINESIA IN HEMIPARKINSONIAN MICE

期刊

NEUROSCIENCE
卷 298, 期 -, 页码 302-317

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2015.04.021

关键词

Parkinson's disease; dopamine; abnormal involuntary movement; striatum; accumbens; TH

资金

  1. University Clinics Giessen and Marburg (UKGM), Germany
  2. German Parkinson Society (DPG)
  3. German Research Foundation (DFG) [HO2402/6-2]

向作者/读者索取更多资源

L-3,4-Dihydroxyphenylalanine (L-DOPA) is the therapeutic gold standard in Parkinson's disease. However, long-term treatment is complicated by the induction of debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesias (LIDs). Until today the underlying mechanisms of LID pathogenesis are not fully understood. The aim of this study was to reveal new factors, which may be involved in the induction of LID. We have focused on the expression of striatal tyrosine hydroxylase-positive (TH+) neurons, which are capable of producing either L-DOPA or dopamine (DA) in target areas of ventral midbrain DAergic neurons. To address this issue, a daily L-DOPA dose was administered over the course of 15 days to mice with unilateral 6-hydroxydopamine-induced lesions of the medial forebrain bundle and LIDs were evaluated. Remarkably, the number of striatal TH+ neurons strongly correlated with both induction and severity of LID as well as Delta FosB expression as an established molecular marker for LID. Furthermore, dyskinetic mice showed a marked augmentation of serotonergic fiber innervation in the striatum, enabling the decarboxylation of L-DOPA to DA. Axial, limb and orolingual dyskinesias were predominantly associated with TH+ neurons in the lateral striatum, whereas medially located TH+ neurons triggered locomotive rotations. In contrast, identified accumbal and cortical TH+ cells did not contribute to the generation of LID. Thus, striatal TH+ cells and serotonergic terminals may cooperatively synthesize DA and subsequently contribute to supraphysiological synaptic DA concentrations, an accepted cause in LID pathogenesis. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据