4.8 Article

Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid

期刊

ACTA BIOMATERIALIA
卷 26, 期 -, 页码 274-285

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.08.029

关键词

Redox-response; HA-ss-PTX conjugates; Cancer-targeted therapy; Intracellular release; CD44

资金

  1. National Natural Science Foundation of China [81373363]
  2. National Major Scientific and Technological Special Project for Significant New Drugs Development during the Twelfth Five-year Plan Period [2015ZX09501001]
  3. Fundamental Research Funds for the Central Universities [PT2014YX0085]
  4. Huahai Pharmaceutical Postgraduate Innovation Fund [CX14B-001HH]
  5. Advantages of Disciplines in Colleges and Universities in Jiangsu Province Construction Grant Program

向作者/读者索取更多资源

Polymer drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 +/- 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. Statement of Significance Polymer drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to elucidate the structure activity relationship and to address whether HA could substitute PEG as a carrier for polymeric conjugates. Based on a series of in vitro and in vivo experiments, HA-ss-PTX performed well in drug loading, cellular internalization, tumor targeting by entering tumor cells via CD44-caveolae-mediated endocytosis and rapidly release drug at target in the presence of GSH. One of the key issues in clinical oncology is to enhance drug delivery efficacy while minimizing side effects. The study indicated that this new polymeric conjugate system would be useful in delivering anticancer agents to improve therapeutic efficacy and to minimize adverse effects, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据