4.5 Article

Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of (methanol + MgCl2) and (ethylene glycol + MgCl2) aqueous solutions

期刊

JOURNAL OF CHEMICAL THERMODYNAMICS
卷 65, 期 -, 页码 198-203

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jct.2013.05.050

关键词

Ethylene glycol; Gas hydrate; Methanol; Magnesium chloride; Thermodynamic inhibitor

资金

  1. Earth System Science Organization, Ministry of Earth Sciences, Government of India, through NIOT, Chennai, India [OEC/10-11/105/NIOT/JITE]
  2. IIT Madras [OEC/10-11/530/NFSC/JITE]

向作者/读者索取更多资源

In this work, the experimental data for the equilibrium conditions of methane and carbon dioxide clathrate hydrates in the presence of (0.1 mass fraction methanol + 0.03, 0.1 mass fraction MgCl2) and (0.1, 0.2 mass fraction ethylene glycol + 0.1 mass fraction MgCl2) aqueous solutions at different temperature and pressure range 263.74 to 280.54 K and 0.98 to 8.02 MPa, respectively and for various concentrations of inhibitors are reported, which is not available in open literature. The equilibrium pressure-temperature curves were generated using an isochoric pressure-search method. The experimental results of methane and carbon dioxide clathrate hydrates in the presence of pure water and the above mentioned aqueous inhibitor solutions are compared with some selected experimental data from the literature in the presence of pure water, single glycol, alcohol or salt aqueous solutions to validate the experimental result and to show the inhibition effects of the aqueous solutions used in this work. The results show that the phase equilibrium of the quaternary system (H2O + ethylene glycol/methanol + CH4/CO2 + MgCl2) is shifted to higher pressures/lower temperatures compared to the phase equilibrium of pure CH4/CO2 due to the inhibition effect. Also, it has been observed that the quaternary system containing methanol has a more inhibition effect than the quaternary system containing ethylene glycol at the same mass fraction of the inhibitor in the aqueous solution. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据