4.7 Article

Accurate Electron Affinities from the Extended Koopmans' Theorem Based on Orbital-Optimized Methods

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 10, 期 5, 页码 2041-2048

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct500186j

关键词

-

资金

  1. Ataturk University Scientific Research Project Council [BAP-2012/476, BAP-2013/315]

向作者/读者索取更多资源

The extended Koopmans' theorem (EKT) provides a systematic way to compute electron affinities (EAs) from any level of theory. Although, it is widely applied to ionization potentials, the EKT approach has not been extensively applied to computations of electron affinities. We present the first benchmarking study to investigate the performances of the EKT methods for predictions of EAs. We assess the performances of the EKT approaches based on orbital-optimized methods [Bozkaya, U. J. Chem. Phys. 2013, 139, 154105], such as the orbital-optimized third-order Moller-Plesset perturbation theory and the orbital-optimized coupled-electron pair theory [OCEPA(0)], and their standard counterparts for EAs of the selected atoms, closed- and open-shell molecules. Especially, results of the OCEPA(0) method (with the aug-cc-pVQZ basis set) for EAs of the considered atoms and molecules are very promising, the corresponding mean absolute errors are 0.14 and 0.17 eV, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据