4.7 Article

Rigid Body Energy Minimization on Manifolds for Molecular Docking

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 8, 期 11, 页码 4374-4380

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct300272j

关键词

-

资金

  1. NIH [1-R01-GM093147-01, GM061867]
  2. NSF [IIS-1237022, DBI-1147082]
  3. Direct For Biological Sciences
  4. Div Of Biological Infrastructure [1147082] Funding Source: National Science Foundation
  5. Direct For Computer & Info Scie & Enginr
  6. Div Of Information & Intelligent Systems [1237022] Funding Source: National Science Foundation
  7. Directorate For Engineering
  8. Div Of Electrical, Commun & Cyber Sys [1239021] Funding Source: National Science Foundation

向作者/读者索取更多资源

Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that; compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space Which locally resembles a Euclidean space. We use a canonical, parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization. algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license and with minimal effort Can be incorporated into any molecular modeling package.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据