4.7 Article

A Vulnerability in Popular Molecular Dynamics Packages Concerning Langevin and Andersen Dynamics

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 4, 期 10, 页码 1669-1680

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct8002173

关键词

-

资金

  1. National Institutes of Health [GM080214]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM080214] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We report a serious problem associated with a number of current implementations of Andersen and Langevin dynamics algorithms. When long simulations are run in many segments, it is sometimes possible to have a repeating sequence of pseudorandom numbers enter the calcuation. We show that, if the sequence repeats rapidly, the resulting artifacts can quickly denature biomolecules and are then easily detectable. However, if the sequence repeats less frequently, the artifacts become subtle and easily overlooked. We derive a formula for the underlying cause of artifacts in the case of the Langevin thermostat, and find it vanishes slowly as the inverse square root of the number of time steps per simulation segment. Numerous examples of simulation artifacts are presented, including dissociation of a tetrameric protein after 110 ns of dynamics, reductions in atomic fluctuations for a small protein in implicit solvent, altered thermodynamic properties of a box of water molecules, and changes in the transition free energies between dihedral angle conformations. Finally, in the case of strong thermocoupling, we link the observed artifacts to previous work in nonlinear dynamics and show that it is possible to drive a 20-residue, implicitly solvated protein into periodic trajectories if the thermostat is not used properly. Our findings should help other investigators re-evaluate simulations that may have been corrupted and obtain more accurate results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据