4.7 Article

Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4774084

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SCHR 11483-1, ME 136112-1]

向作者/读者索取更多资源

Local structure characterization with the bond-orientational order parameters q(4), q(6), ... introduced by Steinhardt et al. [Phys. Rev. B 28, 784 (1983)] has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions, and cluster formation. Here, we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of nearest neighboring (NN) spheres, NN(p), around a given central particle p; we show that the choice of neighborhood definition can have a bigger influence on both the numerical values and qualitative trend of q(l) than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by q(l), leads to a lack of robustness of the q(l) as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics q(l)'. These q(l)' are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [G. E. Schroder-Turk et al., Europhys. Lett. 90, 34001 (2010); S. Kapfer et al., Phys. Rev. E 85, 030301(R) (2012)]. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774084]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据