4.7 Article

Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reactant adsorption at vanadium oxide substrate

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 9, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4793709

关键词

-

资金

  1. German Research Foundation (DFG) via its Joint Collaborative Research Center [SFB 548]

向作者/读者索取更多资源

Extended cluster models together with density-functional theory are used to evaluate geometric, energetic, and electronic properties of different adsorbate species that can occur at a vanadium oxide surface where the selective catalytic reduction (SCR) of NO in the presence of ammonia proceeds. Here, we focus on atomic hydrogen, nitrogen, and oxygen, as well as molecular NO and NHx, x = 1, 4, adsorption at a model V2O5(010) surface. Binding sites, oxygen and vanadium, at both the perfect and reduced surface are considered where reduction is modeled by (sub-) surface oxygen vacancies. The reactants are found to bind overall more strongly at oxygen vacancy sites of the reduced surface where they stabilize in positions formerly occupied by the oxygen (substitutional adsorption) compared with weaker binding at the perfect surface. In particular, ammonia, which interacts only weakly with vanadium at the perfect surface, binds quite strongly near surface oxygen vacancies. In contrast, surface binding of the NH4 adsorbate species differs only little between the perfect and the reduced surface which is explained by the dominantly electrostatic nature of the adsorbate interaction. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the reactant adsorption forming elementary steps of the SCR process. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793709]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据