4.7 Article

Freezing of parallel hard cubes with rounded edges

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 136, 期 14, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3699086

关键词

-

资金

  1. DFG [SFB TR6]

向作者/读者索取更多资源

The freezing transition in a classical three-dimensional system of rounded hard cubes with fixed, equal orientations is studied by computer simulation and fundamental-measure density functional theory. By switching the rounding parameter s from zero to one, one can smoothly interpolate between cubes with sharp edges and hard spheres. The equilibrium phase diagram of rounded parallel hard cubes is computed as a function of their volume fraction and the rounding parameter s. The second order freezing transition known for oriented cubes at s = 0 is found to be persistent up to s = 0.65. The fluid freezes into a simple-cubic crystal which exhibits a large vacancy concentration. Upon a further increase of s, the continuous freezing is replaced by a first-order transition into either a sheared simple cubic lattice or a deformed face-centered cubic lattice with two possible unit cells: body-centered orthorhombic or base-centered monoclinic. In principle, a system of parallel cubes could be realized in experiments on colloids using advanced synthesis techniques and a combination of external fields. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699086]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据