4.7 Article

Adsorption and dissociation of NO on Ir(100): A first-principles study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 135, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3663621

关键词

-

资金

  1. National Nature Science Foundation of China [20973077, 20303007]
  2. Program for New Century Excellent Talents in University (NCET)

向作者/读者索取更多资源

Density functional theory (DFT) and periodic slab model have been used to systemically study the adsorption and dissociation of NO and the formation of N(2) on the Ir(100) surface. The results show that NO prefers the bridge site with the N-end down and NO bond-axis perpendicular to the Ir surface, and adsorption to the top site is only 0.05 eV less favorable, whereas the hollow adsorption is the least stable. Two dissociation pathways for the adsorbed NO on bridge or top site are located: One is a direct decomposition of NO and the other is diffusion of NO from the initial state to the hollow site followed by dissociation into N and O atoms. The latter pathway is more favorable than the former one due to the lower energy barrier and is the primary pathway for NO dissociation. Based on the DFT results, microkinetic analysis suggests that the recombination of two N adatoms on the di-bridge sites is the predominant pathway for N(2) formation, whereas the formation of N(2)O or NO(2) is unlikely to occur during NO reduction. The high selectivity of Ir(100) toward N(2) is in good agreement with the experimental observations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663621]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据