4.7 Article

Stochastic dynamics of complexation reaction in the limit of small numbers

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 134, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3590918

关键词

-

向作者/读者索取更多资源

we study stochastic dynamics of the non-linear bimolecular reaction A + B <-> AB. These reactions are common in several bio-molecular systems such as binding, complexation, protein multimerization to name a few. We use master equation to compute the full distribution of several stochastic equilibrium properties such as number of complexes formed (N-c), equilibrium constant (K). We provide exact analytical and simpler approximate expression for equilibrium fluctuation quantities to quickly estimate the amount of noise as a function of reactant molecules and rates. We construct the phase diagram for a fluctuational quantity f, defined as the ratio of standard deviation to average (f = root <(Delta N-c)(2)>/< N-c >),), as a function of different number of reactant molecules and reaction rates. One of the striking result is, it is possible to have f as high as 45% or higher in significant regions of the phase diagram even when number of reactants involved are around 20-40, typical in biology. Our finding indicates studying averages alone using mass action law needs careful scrutiny. We also outline possible application of our findings in gene expression. Furthermore, we compute average and fluctuation properties of time dependent quantities and derive equations of motion for different moments such as < N-c(t)> and < N-c(t)(2)>. While mean-field mass action law fails to reproduce the exact time dependence, approximate solutions of coupled equations of motions for different moments, capturing fluctuation, is in good agreement with exact results. This may be a way to compute time development of averages and fluctuations in such non-linear systems where mass action law breaks down. Moreover, for this reaction, we outline connection to variational principle of maximum caliber and other more traditional approaches such as chemical Langevin equation. We derive noise statistics for the equivalent Langevin equation and show possible departure from Gaussian white noise. We believe quantitative estimates of phase diagrams for noise, time dependent quantities, and simple analytical expression for equilibrium quantities will be particularly useful to guide experiments involving such non-linear reactions with small numbers of reactants that are often encountered in biology. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590918]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据