4.7 Article

Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3359849

关键词

density functional theory; hydrogen compounds; magnetic shielding; nuclear magnetic resonance; orbital calculations; relativistic corrections; spin-orbit interactions; xenon

资金

  1. COMCHEM
  2. Slovak Academy of Sciences
  3. VEGA [2/0079/09]
  4. APVV [0625-06, VVCE-0004-07]

向作者/读者索取更多资源

A recently developed relativistic four-component density functional method for calculation of nuclear magnetic resonance (NMR) shielding tensors using restricted magnetically balanced basis sets for the small component (mDKS-RMB) was extended to incorporate the gauge including atomic orbitals (GIAO) approach. The combined method eliminates a strong dependence of the results, calculated with a finite basis set, on the choice of the gauge origin for the magnetic potential of a uniform external magnetic field. Benchmark relativistic calculations have been carried out for xenon dimer and the HX series (X=F, Cl, Br, I), where spin-orbit effects are known to be very pronounced for hydrogen shieldings. Our results clearly demonstrate that shieldings calculated at the four-component level with a common gauge (i.e., without GIAO, IGLO, or similar methods to treat the gauge problem) depend dramatically on the choice of the common gauge. The GIAO approach solves the problem in fully relativistic calculations as it does in the nonrelativistic case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据