4.7 Article

A quantitative assessment of the accuracy of centroid molecular dynamics for the calculation of the infrared spectrum of liquid water

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3291212

关键词

infrared spectra; molecular dynamics method; probability; red shift

资金

  1. Office of Naval Research [N00014-05-1-0457]

向作者/读者索取更多资源

A detailed analysis of the infrared lineshapes corresponding to the intramolecular bond vibrations of HOD in either H(2)O or D(2)O is presented here in order to quantitatively assess the accuracy of centroid molecular dynamics in reproducing the correct features of the infrared spectrum of water at ambient conditions. Through a direct comparison with the results obtained from mixed quantum-classical calculations, it is shown that centroid molecular dynamics provides accurate vibrational shifts and lineshapes when the intramolecular bond stretching vibrations are described by a physically reasonable anharmonic potential. Artificially large redshifts due to a so-called curvature problem are instead obtained with an unphysical shifted harmonic potential because the latter allows substantial probability density at zero bond lengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据