4.7 Article

Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3442416

关键词

-

资金

  1. U.S. National Science Foundation
  2. German Science Foundation [CHE-0724062, DFG-SCHI 331 14-1]
  3. National Science Foundation [CHE-0605136]

向作者/读者索取更多资源

Highly stable glass films of indomethacin (IMC) with thicknesses ranging from 75 to 2900 nm were prepared by physical vapor deposition. Alternating current (AC) nanocalorimetry was used to evaluate the heat capacity and kinetic stability of the glasses as a function of thickness. Glasses deposited at a substrate temperature of 0.84T(g) displayed heat capacities that were approximately 19 J/(mol K) (4.5%) lower than glasses deposited at T-g (315 K) or the ordinary glass prepared by cooling the liquid. This difference in heat capacity was observed over the entire thickness range and is significantly larger than the similar to 2 J/(mol K) (0.3%) difference previously observed between aged and ordinary glasses. The vapor-deposited glasses were isothermally transformed into the supercooled liquid above T-g. Glasses with low heat capacities exhibited high kinetic stability. The transformation time increased by an order of magnitude as the film thickness increased from 75 to 600 nm and was independent of film thickness for the thickest films. We interpret these results to indicate that the transformation of stable glass into supercooled liquid can occur by either a surface-initiated or bulk mechanism. In these experiments, the structural relaxation time of the IMC supercooled liquid was observed to be nearly independent of sample thickness. (c) 2010 American Institute of Physics. [doi:10.1063/1.3442416]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据