4.8 Article

Dense nanoparticles exhibit enhanced vascular wall targeting over neutrally buoyant nanoparticles in human blood flow

期刊

ACTA BIOMATERIALIA
卷 21, 期 -, 页码 99-108

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.04.005

关键词

Drug delivery; Hemodynamics; Inflammation; Nanoparticles; Vascular targeting

资金

  1. NSF - United States [CBET1054352]
  2. Directorate For Engineering [1054352] Funding Source: National Science Foundation
  3. Div Of Chem, Bioeng, Env, & Transp Sys [1054352] Funding Source: National Science Foundation

向作者/读者索取更多资源

For vascular-targeting carrier (VTC) systems to be effective, carriers must be able to localize and adhere to the vascular wall at the target site. Research suggests that neutrally buoyant nanoparticles are limited by their inability to localize to the endothelium, making them sub-optimal as carriers. This study examines whether particle density can be exploited to improve the targeting (localization and adhesion) efficiency of nanospheres to the vasculature. Silica spheres with 500 nm diameter, which have a density roughly twice that of blood, exhibit improved adhesion to inflamed endothelium in an in vitro model of human vasculature compared to neutrally buoyant polystyrene spheres of the same size. Silica spheres also display better near-wall localization in the presence of red blood cells than they do in pure buffer, likely resulting in the observed improvement in adhesion. Titania spheres (4 times more dense than blood) adhere at levels higher than polystyrene, but only in conditions when gravity or centrifugal force acts in the direction of adhesion. In light of the wide array of materials proposed for use as carrier systems for drug delivery and diagnostics, particle density may be a useful tool for improving the targeting of diseased tissues. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据