4.7 Article

Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3139519

关键词

chemical reactions; dielectric relaxation; microwave heating; supercooling; vitrification

向作者/读者索取更多资源

Using time-resolved nonlinear dielectric relaxation measurements at fields as high as 450 kV/cm, the nonthermal effects of energy absorption are studied for simple and associating polar liquids in their supercooled state. The experiment is a low frequency analog of microwave heating and facilitates tracking the flow of energy in time, as it accumulates in slow degrees of freedom and transfers eventually to the vibrational heat bath of the liquid. Most findings agree with a phenomenological model of heterogeneous relaxation regarding structure and configurational temperature. The relevant thermal behavior of monohydroxy alcohols differs considerably from the cases of simple nonassociating liquids due to their distinct origins of the prominent dielectric absorption mode for the two classes of liquids. Nonthermal effects are observed as dynamics that are accelerated without increasing sample temperature, but for the present low frequencies the changes remain too small to explain the high efficiencies reported for microwave chemistry. Limitations as to how rapidly the faster relaxation time constants are able to adjust to temperature separate the modes of the dispersive alpha-relaxation into a relaxation and an aging regime, thereby explaining the incompatibility of heterogeneous dynamics with common physical aging observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据