4.7 Article

Step decoration of chiral metal surfaces

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3096964

关键词

adsorbed layers; adsorption; chirality; copper; density functional theory; enthalpy; entropy; impurities; iridium; palladium; rhodium; silver; surface segregation

资金

  1. NSF [0717978]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [0717978] Funding Source: National Science Foundation

向作者/读者索取更多资源

Highly stepped metal surfaces can define intrinsically chiral structures and these chiral surfaces can potentially be used to separate chiral molecules. The decoration of steps on these surfaces with additional metal atoms is one potential avenue for improving the enantiospecificity of these surfaces. For a successful step decoration, the additional metal atoms should ideally remain at the kinked step sites on the surface. We performed density functional theory (DFT) calculations to identify pairs of metal adatoms and metal surfaces where this kind of step decoration could be thermodynamically stable. These calculations have identified multiple stable examples of step decoration. Using our DFT results, we developed a model to predict surface segregation on a wide range of stepped metal surfaces. With this model, we have estimated the stability of step decoration without further DFT calculations for surface segregation for all combinations of the 3d, 4d, and 5d metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据