4.7 Article

Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3212449

关键词

adsorption; binding energy; bonds (chemical); density functional theory; enthalpy; gold; lead; mercury (metal); van der Waals forces

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [JA 1072/4-1]

向作者/读者索取更多资源

Fully relativistic (four-component) density-functional theory calculations were performed for elements 112 and 114 and their lighter homologs, Hg and Pb, interacting with gold systems, from an atom to a Au-n cluster simulating the Au(111) surface. Convergence of the adatom-metal cluster binding energies E-b with cluster size was reached for n>90. Hg, Pb, and element 114 were found to preferably adsorb at the bridge position, while element 112 was found to preferably adsorb at a hollow site. Independently of the cluster size, the trend in E-b is Pb114>Hg>112. The obtained E-b for Pb and element 112 are in good agreement with the measured adsorption enthalpies of these elements on gold, while the Hg value is obviously underestimated, confirming the observation that adsorption takes place not on the surface but in it. A comparison of chemical bonding in various systems shows that element 114 should be more reactive than element 112: A relative inertness of the latter is caused by the strong relativistic stabilization of the 7s atomic orbital. On the contrary, van der Waals bonding in element 114 systems should be weaker than in those of element 112 due to its larger radius.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据