4.7 Review

Analytic gradients for the state-specific multireference coupled cluster singles and doubles model

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3204017

关键词

coupled cluster calculations; HF calculations; molecular configurations; organic compounds; positive ions

资金

  1. Deutsche Forschungsgemeinschaft
  2. Fonds der Chemischen Industrie
  3. U.S. National Science Foundation [CHE-0749868]
  4. Division Of Chemistry
  5. Direct For Mathematical & Physical Scien [749868] Funding Source: National Science Foundation

向作者/读者索取更多资源

The general theory of analytic energy gradients is presented for the state-specific multireference coupled cluster method introduced by Mukherjee and co-workers [Mol. Phys. 94, 157 (1998)], together with an implementation within the singles and doubles approximation, restricted to two closed-shell determinants and Hartree-Fock orbitals. Expressions for the energy gradient are derived based on a Lagrangian formalism and cast in a density-matrix notation suitable for implementation in standard quantum-chemical program packages. In the present implementation, we exploit a decomposition of the multireference coupled cluster gradient expressions, i.e., lambda equations and the corresponding density matrices, into a so-called single-reference part for each reference determinant and a coupling term. Our implementation exhibits the proper scaling, i.e., O(dN(6)) with d as the number of reference determinants and N as the number of orbitals, and it is thus suitable for large-scale applications. The applicability of our multireference coupled cluster gradients is illustrated by computations for the equilibrium geometry of the 2,6-isomers of pyridyne and the pyridynium cation. The results are compared to those from single-reference coupled cluster calculations and are discussed with respect to the future perspectives of multireference coupled cluster theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据