4.7 Article

Molecular origin of the negative heat capacity of hydrophilic hydration

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3112610

关键词

solvation; specific heat; water

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [20118004]
  2. Next Generation Super Computing Project
  3. Nanoscience Program
  4. MEXT, Japan
  5. Grants-in-Aid for Scientific Research [20118004] Funding Source: KAKEN

向作者/读者索取更多资源

The hydrophobic and hydrophilic hydrations are analyzed with the emphasis on the sign of the heat capacity of hydration (HCH). The angle-dependent integral equation theory combined with a multipolar water model is employed in the analysis. The hydration entropy (HE) is decomposed into the translational and orientational parts. It is found that the orientational part governs the temperature dependence of the HE. The orientational part is further decomposed into the solute-water pair correlation component (component 1) and the water reorganization component (component 2). For hydrophilic solutes, components 1 and 2 are negative and positive, respectively. As the temperature becomes higher, component 1 increases while component 2 decreases: They make positive and negative contributions to the HCH, respectively. The strong solute-water electrostatic attractive interactions induce the distortion of water structure near the solute and the break of hydrogen bonds. As the temperature increases, the effect of the attractive interactions becomes smaller and the distortion of water structure is reduced (i.e., more hydrogen bonds are recovered with increasing temperature). The latter effect dominates, leading to negative HCH. During the heat addition the formation of hydrogen bonds, which accompanies heat generation, occurs near the solute. Consequently, the addition of the same amount of heat leads to a larger increase in the thermal energy (or equivalently, in the temperature) than in the case of pure water. The hydrophobic hydration, which is opposite to the hydrophilic hydration in many respects, is also discussed in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据