4.7 Article

Connectivity in the potential energy landscape for binary Lennard-Jones systems

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3131690

关键词

diffusion; Lennard-Jones potential; liquid theory

资金

  1. EPSRC

向作者/读者索取更多资源

Connectivity in the potential energy landscape of a binary Lennard-Jones system can be characterized at the level of cage-breaking. We calculate the number of cage-breaking routes from a given local minimum and determine the branching probabilities at different temperatures, along with correlation factors that represent the repeated reversals of cage-breaking events. The number of reversals increases at lower temperatures and for more fragile systems, while the number of accessible connections decreases. We therefore associate changes in connectivity with super-Arrhenius behavior. Reversals in minimum-to-minimum transitions are common, but often correspond to non-cage-breaking processes. We demonstrate that the average waiting time within a minimum shows simple exponential behavior with decreasing temperature. To describe the long-term behavior of the system, we consider reversals and connectivity in terms of the cage-breaking processes that are pertinent to diffusion [V. K. de Souza and D. J. Wales, J. Chem. Phys. 129, 164507 (2008)]. These cage-breaking events can be modeled by a correlated random walk. Thus, a full correlation factor can be calculated using short simulations that extend up to two cage-breaking events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据