4.7 Article

Enhanced hydrogen adsorption in boron substituted carbon nanospaces

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3251788

关键词

-

资金

  1. Department of Energy [DE-FG02-07ER46411, DE-FC36-08GO18142]

向作者/读者索取更多资源

Activated carbons are one of promising groups of materials for reversible storage of hydrogen by physisorption. However, the heat of hydrogen adsorption in such materials is relatively low, in the range of about 4-8 kJ/mol, which limits the total amount of hydrogen adsorbed at P=100 bar to similar to 2 wt % at room temperature and similar to 8 wt % at 77 K. To improve the sorption characteristics the adsorbing surfaces must be modified either by substitution of some atoms in the all-carbon skeleton by other elements, or by doping/intercalation with other species. In this letter we present ab initio calculations and Monte Carlo simulations showing that substitution of 5%-10% of atoms in a nanoporous carbon by boron atoms results in significant increases in the adsorption energy (up to 10-13.5 kJ/mol) and storage capacity (similar to 5 wt % at 298 K, 100 bar) with a 97% delivery rate. (C) 2009 American Institute of Physics. [doi:10.1063/1.3251788]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据